These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37890150)

  • 1. High or Low Coordination: Insight into the Active Site of Pt Nanoparticles toward CO Oxidation.
    Duan X; Ying L; Li XY; Zhu B; Gao Y
    J Phys Chem Lett; 2023 Nov; 14(44):9848-9854. PubMed ID: 37890150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the morphology of Pt nanoparticles for the optimal catalytic activity towards CO oxidation.
    Duan X; Li XY; Zhu B; Gao Y
    Nanoscale; 2022 Dec; 14(47):17754-17760. PubMed ID: 36422007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pt-Embedded CuO
    Wu K; Fu XP; Yu WZ; Wang WW; Jia CJ; Du PP; Si R; Wang YH; Li LD; Zhou L; Sun LD; Yan CH
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34172-34183. PubMed ID: 30205674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen.
    Kieken LD; Neurock M; Mei D
    J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fine-tuned local coordination environment of Pt single atoms on ceria controls catalytic reactivity.
    Tan W; Xie S; Le D; Diao W; Wang M; Low KB; Austin D; Hong S; Gao F; Dong L; Ma L; Ehrlich SN; Rahman TS; Liu F
    Nat Commun; 2022 Nov; 13(1):7070. PubMed ID: 36400791
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesokinetics as a Tool Bridging the Microscopic-to-Macroscopic Transition to Rationalize Catalyst Design.
    Chen W; Qian G; Wan Y; Chen D; Zhou X; Yuan W; Duan X
    Acc Chem Res; 2022 Nov; 55(22):3230-3241. PubMed ID: 36321554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Site-Assembly Determines Catalytic Activity of Nanoparticles.
    Jørgensen M; Grönbeck H
    Angew Chem Int Ed Engl; 2018 Apr; 57(18):5086-5089. PubMed ID: 29498464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DFT investigation of CO adsorption on Pt(211) and Pt(311) surfaces from low to high coverage.
    Orita H; Inada Y
    J Phys Chem B; 2005 Dec; 109(47):22469-75. PubMed ID: 16853927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential CO oxidation in hydrogen: reactivity of core-shell nanoparticles.
    Nilekar AU; Alayoglu S; Eichhorn B; Mavrikakis M
    J Am Chem Soc; 2010 Jun; 132(21):7418-28. PubMed ID: 20459102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terrace-Rich Ultrathin PtCu Surface on Earth-Abundant Metal for Oxygen Reduction Reaction.
    Sun M; Gong S; Li Z; Huang H; Chen Y; Niu Z
    ACS Nano; 2023 Oct; 17(19):19421-19430. PubMed ID: 37721808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysts of self-assembled Pt@CeO
    Wei Y; Jiao J; Zhang X; Jin B; Zhao Z; Xiong J; Li Y; Liu J; Li J
    Nanoscale; 2017 Mar; 9(13):4558-4571. PubMed ID: 28321449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interface engineering for a rational design of poison-free bimetallic CO oxidation catalysts.
    Shin K; Zhang L; An H; Ha H; Yoo M; Lee HM; Henkelman G; Kim HY
    Nanoscale; 2017 Apr; 9(16):5244-5253. PubMed ID: 28397916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes.
    Wang H; Abruña HD
    J Phys Chem Lett; 2015 May; 6(10):1899-906. PubMed ID: 26263266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facet-Controlled Cu
    Hong S; Kim D; Kim KJ; Park JY
    J Phys Chem Lett; 2023 Jun; 14(23):5241-5248. PubMed ID: 37263187
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulating Pt Nanoparticles inside a Derived Two-Dimensional Metal-Organic Frameworks for the Enhancement of Catalytic Activity.
    Wu W; Zhang Z; Lei Z; Wang X; Tan Y; Cheng N; Sun X
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10359-10368. PubMed ID: 32019299
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.
    Prasai B; Ren Y; Shan S; Zhao Y; Cronk H; Luo J; Zhong CJ; Petkov V
    Nanoscale; 2015 May; 7(17):8122-34. PubMed ID: 25874741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CeO
    Wang H; Yao R; Zhang R; Ma H; Gao J; Liang M; Zhao Y; Miao Z
    Molecules; 2023 Feb; 28(4):. PubMed ID: 36838854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into catalytic oxidation at the Au/TiO(2) dual perimeter sites.
    Green IX; Tang W; Neurock M; Yates JT
    Acc Chem Res; 2014 Mar; 47(3):805-15. PubMed ID: 24372536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.