These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37890220)

  • 1. Effect of inelastic deformation on strain rate-dependent mechanical behaviour of human cortical bone.
    Uniyal P; Kaur S; Dhiman V; Kumar Bhadada S; Kumar N
    J Biomech; 2023 Dec; 161():111853. PubMed ID: 37890220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical and morphological effects of strain rate on fatigue of compact bone.
    Schaffler MB; Radin EL; Burr DB
    Bone; 1989; 10(3):207-14. PubMed ID: 2803855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale compressive behavior of hydrated lamellar bone at high strain rates.
    Peruzzi C; Ramachandramoorthy R; Groetsch A; Casari D; Grönquist P; Rüggeberg M; Michler J; Schwiedrzik J
    Acta Biomater; 2021 Sep; 131():403-414. PubMed ID: 34245895
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of organic matrix alteration on strain rate dependent mechanical behaviour of cortical bone.
    Uniyal P; Sihota P; Kumar N
    J Mech Behav Biomed Mater; 2022 Jan; 125():104910. PubMed ID: 34700105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation on the sensitivity of indentation devices for detection of fatigue loading induced damage in bovine cortical bone.
    Uniyal P; Sharma A; Kumar N
    J Biomech; 2022 Oct; 143():111274. PubMed ID: 36049386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of torsional loading on compressive fatigue behaviour of trabecular bone.
    Fatihhi SJ; Rabiatul AA; Harun MN; Kadir MR; Kamarul T; Syahrom A
    J Mech Behav Biomed Mater; 2016 Feb; 54():21-32. PubMed ID: 26410762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-cycle full-field residual strains in cortical bone and their influence on tissue fracture evaluated via in situ stepwise and continuous X-ray computed tomography.
    Peña Fernández M; Kao AP; Witte F; Arora H; Tozzi G
    J Biomech; 2020 Dec; 113():110105. PubMed ID: 33181395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical fatigue of whole rabbit-tibiae under combined compression-torsional loading is better explained by strained volume than peak strain magnitude.
    Haider IT; Lee M; Page R; Smith D; Edwards WB
    J Biomech; 2021 Jun; 122():110434. PubMed ID: 33910082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of gamma radiation sterilization and strain rate on compressive behavior of equine cortical bone.
    Tüfekci K; Kayacan R; Kurbanoğlu C
    J Mech Behav Biomed Mater; 2014 Jun; 34():231-42. PubMed ID: 24607761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatiotemporal characterization of microdamage accumulation in rat ulnae in response to uniaxial compressive fatigue loading.
    Zhang X; Liu X; Yan Z; Cai J; Kang F; Shan S; Wang P; Zhai M; Edward Guo X; Luo E; Jing D
    Bone; 2018 Mar; 108():156-164. PubMed ID: 29331298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tensile and compressive strain evolutions of bovine compact bone under four-point bending fatigue loading.
    Meng X; Qin Q; Qu C
    J Mech Behav Biomed Mater; 2021 Nov; 123():104774. PubMed ID: 34404024
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive mechanical properties of bovine cortical bone under varied loading rates.
    Yu B; Zhao GF; Lim JI; Lee YK
    Proc Inst Mech Eng H; 2011 Oct; 225(10):941-7. PubMed ID: 22204116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms governing the inelastic deformation of cortical bone and application to trabecular bone.
    Mercer C; He MY; Wang R; Evans AG
    Acta Biomater; 2006 Jan; 2(1):59-68. PubMed ID: 16701859
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression.
    Malekipour F; Hitchens PL; Whitton RC; Lee PV
    J Biomech; 2020 Feb; 100():109594. PubMed ID: 31924348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microdamage assessment of bone-cement interfaces under monotonic and cyclic compression.
    Tozzi G; Zhang QH; Tong J
    J Biomech; 2014 Nov; 47(14):3466-74. PubMed ID: 25283468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation behaviour and damage accumulation of cortical bone specimens from the equine tibia under cyclic loading.
    Fleck C; Eifler D
    J Biomech; 2003 Feb; 36(2):179-89. PubMed ID: 12547355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The response of equine cortical bone to loading at strain rates experienced in vivo by the galloping horse.
    Evans GP; Behiri JC; Vaughan LC; Bonfield W
    Equine Vet J; 1992 Mar; 24(2):125-8. PubMed ID: 1582390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range.
    Carter DR; Caler WE; Spengler DM; Frankel VH
    Acta Orthop Scand; 1981 Oct; 52(5):481-90. PubMed ID: 7331784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.