These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37890272)
1. Copper and zinc accumulation, distribution, and tolerance in Pistia stratiotes L.; revealing the role of root caps. Kokavcová A; Bokhari SNH; Mijovilovich A; Morina F; Lukačová Z; Kohanová J; Lux A; Küpper H Aquat Toxicol; 2023 Nov; 264():106731. PubMed ID: 37890272 [TBL] [Abstract][Full Text] [Related]
2. Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Lu Q; He ZL; Graetz DA; Stoffella PJ; Yang X Environ Sci Pollut Res Int; 2011 Jul; 18(6):978-86. PubMed ID: 21287283 [TBL] [Abstract][Full Text] [Related]
3. Tolerance mechanism and phytoremediation potential of Li Y; Xin J; Ge W; Tian R Int J Phytoremediation; 2022; 24(12):1259-1266. PubMed ID: 35037542 [No Abstract] [Full Text] [Related]
4. Responses in Plant Growth and Root Exudates of Wang Y; Zhang P; Yang C; Guo Y; Gao P; Wang T; Liu Y; Xu L; Zhou G Plants (Basel); 2024 Mar; 13(5):. PubMed ID: 38475582 [TBL] [Abstract][Full Text] [Related]
5. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Odjegba VJ; Fasidi IO Ecotoxicology; 2004 Oct; 13(7):637-46. PubMed ID: 15673213 [TBL] [Abstract][Full Text] [Related]
6. Response of Pistia stratiotes to heavy metals (Cr, Ni, and Zn) and phosphorous. Mufarrege MM; Hadad HR; Maine MA Arch Environ Contam Toxicol; 2010 Jan; 58(1):53-61. PubMed ID: 19506937 [TBL] [Abstract][Full Text] [Related]
7. Assessment of plant growth attributes, bioaccumulation, enrichment, and translocation of heavy metals in water lettuce (Pistia stratiotes L.) grown in sugar mill effluent. Kumar V; Singh J; Chopra AK Int J Phytoremediation; 2018 Apr; 20(5):507-521. PubMed ID: 29608378 [TBL] [Abstract][Full Text] [Related]
8. Bioaccumulation and rhizofiltration potential of Pistia stratiotes L. for mitigating water pollution in the Egyptian wetlands. Galal TM; Eid EM; Dakhil MA; Hassan LM Int J Phytoremediation; 2018 Apr; 20(5):440-447. PubMed ID: 29053352 [TBL] [Abstract][Full Text] [Related]
9. Phytoremediation potential of Tabinda AB; Irfan R; Yasar A; Iqbal A; Mahmood A Environ Technol; 2020 May; 41(12):1514-1519. PubMed ID: 30355050 [TBL] [Abstract][Full Text] [Related]
10. Experiments and modeling to develop a Pistia stratiotes based Floating Vegetated System (FVS) for the removal of heavy metals (Pb, Zn, Cr, Cu, Ni). Samal K; Dash RR Sci Total Environ; 2024 May; 926():171981. PubMed ID: 38547997 [TBL] [Abstract][Full Text] [Related]
11. Potential of water lettuce ( Rodrigues ACD; Rocha MVC; Lima ESA; Pinho CF; Santos AMD; Santos FSD; Amaral Sobrinho NMBD Int J Phytoremediation; 2020; 22(10):1019-1027. PubMed ID: 32064901 [TBL] [Abstract][Full Text] [Related]
12. The invasive macrophyte Pistia stratiotes L. as a bioindicator for water pollution in Lake Mariut, Egypt. Galal TM; Farahat EA Environ Monit Assess; 2015 Nov; 187(11):701. PubMed ID: 26497561 [TBL] [Abstract][Full Text] [Related]
13. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): experimental and prediction modeling studies. Kumar V; Singh J; Kumar P Environ Sci Pollut Res Int; 2019 May; 26(14):14400-14413. PubMed ID: 30868462 [TBL] [Abstract][Full Text] [Related]
14. Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage. Schwantes D; Gonçalves AC; Schiller ADP; Manfrin J; Campagnolo MA; Somavilla E Int J Phytoremediation; 2019; 21(7):714-723. PubMed ID: 30656947 [TBL] [Abstract][Full Text] [Related]
15. Decontamination of coal mine effluent generated at the Rajrappa coal mine using phytoremediation technology. Lakra KC; Lal B; Banerjee TK Int J Phytoremediation; 2017 Jun; 19(6):530-536. PubMed ID: 27936868 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of electro-assisted phytoremediation (EAPR) system for heavy metal removal from synthetic leachate using Chan MY; Tee CS; Chai TT; Sim YL; Beh WL Int J Phytoremediation; 2022; 24(13):1376-1384. PubMed ID: 35191343 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of nickel and chromium-containing industrial wastewaters by water lettuce ( Şentürk İ; Eyceyurt Divarcı NS; Öztürk M Int J Phytoremediation; 2023; 25(5):550-561. PubMed ID: 35786212 [TBL] [Abstract][Full Text] [Related]
18. Regulation and microbial response mechanism of nitric oxide to copper-containing swine wastewater treated by Pistia stratiotes. Hou T; Liu J; Yao Y; Chen K; Mao C; Zhang J; Li Z; Zhang K; Yang P Environ Pollut; 2024 Oct; 359():124560. PubMed ID: 39019313 [TBL] [Abstract][Full Text] [Related]
19. Toxicity, growth and accumulation relationships of copper, lead and zinc in the grey mangrove Avicennia marina (Forsk.) Vierh. MacFarlane GR; Burchett MD Mar Environ Res; 2002; 54(1):65-84. PubMed ID: 12148945 [TBL] [Abstract][Full Text] [Related]
20. The effects of copper, manganese and zinc on plant growth and elemental accumulation in the manganese-hyperaccumulator Phytolacca americana. Zhao H; Wu L; Chai T; Zhang Y; Tan J; Ma S J Plant Physiol; 2012 Sep; 169(13):1243-52. PubMed ID: 22796009 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]