BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37890302)

  • 1. Co-treatment of steel slag and oil shale waste in cemented paste backfill: Evaluation of fresh properties, microstructure, and heavy metals immobilization.
    Chang Y; Zhiyun Z; Dengfeng Z; Di Z; Liguo X
    J Environ Manage; 2024 Jan; 349():119406. PubMed ID: 37890302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recycling of arsenic-containing biohydrometallurgy waste to produce a binder for cemented paste backfill: Co-treatment with oil shale residue.
    Zhao Y; Gu X; Qiu J; Zhang S; Guo Z; Sun X
    J Environ Manage; 2022 Oct; 319():115621. PubMed ID: 35849925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Cemented Oil Shale Residue-Steel Slag-Ground Granulated Blast Furnace Slag Backfill and Its Environmental Impact.
    Li X; Li K; Sun Q; Liu L; Yang J; Xue H
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on properties of sewage sludge cemented paste backfill and leaching mechanism of heavy metals.
    Chen S; Liu Y; Ma J; Du Y; Sun C
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):56774-56785. PubMed ID: 36928701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and performance of composite activated slag-based binder for cemented paste backfill.
    Yang F; Wu F; Yang B; Li L; Gao Q
    Chemosphere; 2022 Dec; 309(Pt 1):136649. PubMed ID: 36181840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    J Hazard Mater; 2009 Sep; 168(2-3):848-56. PubMed ID: 19299080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low carbon binder modified by calcined quarry dust for cemented paste backfill and the associated environmental assessments.
    Zhao Y; Qiu J; Zhang S; Guo Z; Wu P; Sun X; Gu X
    J Environ Manage; 2021 Dec; 300():113760. PubMed ID: 34534757
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings.
    Ercikdi B; Cihangir F; Kesimal A; Deveci H; Alp I
    J Hazard Mater; 2010 Jul; 179(1-3):940-6. PubMed ID: 20382473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of modified copper slag activated by Na
    Chen Q; Tao Y; Feng Y; Zhang Q; Liu Y
    J Environ Manage; 2021 Jul; 290():112608. PubMed ID: 33901826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of Cr(VI)-containing tailings by using slag-cementing materials for cemented paste backfill: influence of sulfate and limestone addition.
    Zhao L
    Environ Sci Pollut Res Int; 2023 Aug; 30(40):91984-91996. PubMed ID: 37479941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the Strength and Leaching Characteristics of Steel Slag-Oil Shale Residue-Based Filling Paste in a Complex Erosive Environment.
    Lian F; Du C; Meng D
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of partial cement substitution by ground blast furnace slag on the mechanical properties of phosphogypsum cemented backfill.
    Chen G; Yao N; Ye Y; Fu F; Hu N; Zhang Z
    Environ Sci Pollut Res Int; 2023 Oct; 30(46):102972-102985. PubMed ID: 37676458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-part alkali-activated slag binder for cemented fine tailings backfill: proportion optimization and properties evaluation.
    Zhu G; Zhu W; Qi Z; Yan B; Jiang H; Hou C
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):73865-73877. PubMed ID: 35622284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill.
    Ercikdi B; Baki H; İzki M
    J Environ Manage; 2013 Jan; 115():5-13. PubMed ID: 23220652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of a new type of cemented paste backfill with solid waste from carbide slag, soda residue, and red mud: mechanism, optimization, and its environmental effects.
    Li B; Sun Q; Liu Z; Tan Y
    Environ Sci Pollut Res Int; 2023 Sep; 30(43):96660-96677. PubMed ID: 37578582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilisation of construction and demolition waste as cemented paste backfill material for underground mine openings.
    Yılmaz T; Ercikdi B; Deveci H
    J Environ Manage; 2018 Sep; 222():250-259. PubMed ID: 29859465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study on Microstructure and Erosion Mechanisms of Solid Waste Cemented Paste Backfill under the Combined Action of Dry-Wet Cycles and Sulphate Erosion.
    Li K; Li X; Du C; Xue H; Sun Q; Liu L
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35208026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of metals in backfill of a phosphate mine of guiyang, China using a three-step sequential extraction technique.
    Shi Y; Gan L; Li X; He S; Sun C; Gao L
    Chemosphere; 2018 Feb; 192():354-361. PubMed ID: 29121565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching of heavy metals from solidified waste using Portland cement and zeolite as a binder.
    Napia C; Sinsiri T; Jaturapitakkul C; Chindaprasirt P
    Waste Manag; 2012 Jul; 32(7):1459-67. PubMed ID: 22465398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of slag-based cementitious material on the mechanical behavior and heavy metal immobilization of mine tailings based cemented paste backfill.
    Zhang F; Li Y; Zhang J; Gui X; Zhu X; Zhao C
    Heliyon; 2022 Sep; 8(9):e10695. PubMed ID: 36164537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.