BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37890381)

  • 1. Mechanisms underlying the alleviated cadmium toxicity in marine diatoms adapted to ocean acidification.
    Zhang Z; Ma J; Chen F; Chen Y; Pan K; Liu H
    J Hazard Mater; 2024 Feb; 463():132804. PubMed ID: 37890381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of CO
    Dong F; Zhu X; Qian W; Wang P; Wang J
    Mar Pollut Bull; 2020 Jan; 150():110594. PubMed ID: 31727316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of elevated pCO
    Zhang X; Xu D; Huang S; Wang S; Han W; Liang C; Zhang Y; Fan X; Zhang X; Wang Y; Wang W; Egan S; Saha M; Li F; Ye N
    J Hazard Mater; 2020 Sep; 396():122749. PubMed ID: 32361134
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure.
    Dai X; Zhang J; Zeng X; Huang J; Lin J; Lu Y; Liang S; Ye M; Xiao M; Zhao J; Overmans S; Xia J; Jin P
    Mar Pollut Bull; 2022 Oct; 183():114056. PubMed ID: 36058179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Survival of Nutrient-Starved Diatoms Under Ocean Acidification: Perspective from Nutrient Sensing, Cadmium Detection, and Nitrogen Assimilation.
    Zhang Z; Pan K; Liu H
    Bull Environ Contam Toxicol; 2023 Dec; 112(1):21. PubMed ID: 38150047
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The physiological response of marine diatoms to ocean acidification: differential roles of seawater pCO
    Shi D; Hong H; Su X; Liao L; Chang S; Lin W
    J Phycol; 2019 Jun; 55(3):521-533. PubMed ID: 30849184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitigation effects of CO
    Dong F; Wang P; Qian W; Tang X; Zhu X; Wang Z; Cai Z; Wang J
    Environ Pollut; 2020 Apr; 259():113850. PubMed ID: 31887602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acclimation and adaptation to elevated pCO
    Xu D; Schaum CE; Li B; Chen Y; Tong S; Fu FX; Hutchins DA; Zhang X; Fan X; Han W; Wang Y; Ye N
    ISME J; 2021 Jun; 15(6):1599-1613. PubMed ID: 33452476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of seawater acidification and cadmium on the antioxidant defense of flounder Paralichthys olivaceus larvae.
    Cui W; Cao L; Liu J; Ren Z; Zhao B; Dou S
    Sci Total Environ; 2020 May; 718():137234. PubMed ID: 32087580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decreased photosynthesis and growth with reduced respiration in the model diatom Phaeodactylum tricornutum grown under elevated CO
    Li F; Beardall J; Collins S; Gao K
    Glob Chang Biol; 2017 Jan; 23(1):127-137. PubMed ID: 27629864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How marine diatoms cope with metal challenge: Insights from the morphotype-dependent metal tolerance in Phaeodactylum tricornutum.
    Ma J; Zhou B; Chen F; Pan K
    Ecotoxicol Environ Saf; 2021 Jan; 208():111715. PubMed ID: 33396046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seawater acidification aggravated cadmium toxicity in the oyster Crassostrea gigas: Metal bioaccumulation, subcellular distribution and multiple physiological responses.
    Cao R; Liu Y; Wang Q; Dong Z; Yang D; Liu H; Ran W; Qu Y; Zhao J
    Sci Total Environ; 2018 Nov; 642():809-823. PubMed ID: 29925053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nitrogen and phosphorus availability on cadmium tolerance in the marine diatom Phaeodactylum tricornutum.
    Ma J; Chen F; Zhou B; Zhang Z; Pan K
    Sci Total Environ; 2022 Sep; 838(Pt 4):156615. PubMed ID: 35691352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ocean acidification increases copper accumulation and exacerbates copper toxicity in Amphioctopus fangsiao (Mollusca: Cephalopoda): A potential threat to seafood safety.
    Zheng J; Li Q; Zheng X
    Sci Total Environ; 2023 Sep; 891():164473. PubMed ID: 37244623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of ocean acidification and cadmium toxicity in the marine crab Scylla serrata: Biological indices and oxidative stress responses.
    Thangal SH; Nandhini Priya R; Vasuki C; Gayathri V; Anandhan K; Yogeshwaran A; Muralisankar T; Ramesh M; Rajaram R; Santhanam P; Venmathi Maran BA
    Chemosphere; 2023 Dec; 345():140447. PubMed ID: 37858766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Faster recovery of a diatom from UV damage under ocean acidification.
    Wu Y; Campbell DA; Gao K
    J Photochem Photobiol B; 2014 Nov; 140():249-54. PubMed ID: 25173760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of ocean acidification on thermal reaction norms of carbon metabolism in the marine diatom Phaeodactylum tricornutum.
    Tong S; Xu D; Wang Y; Zhang X; Li Y; Wu H; Ye N
    Mar Environ Res; 2021 Feb; 164():105233. PubMed ID: 33310685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ocean acidification and desalination increase the growth and photosynthesis of the diatom Skeletonema costatum isolated from the coastal water of the Yellow Sea.
    Wu R; Wu Y; Zhai R; Gao K; Xu J
    Mar Environ Res; 2024 May; 197():106450. PubMed ID: 38552454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The tolerance of two marine diatoms to diurnal pH fluctuation under dynamic light condition and ocean acidification scenario.
    Shang Y; He J; Qiu J; Hu S; Wang X; Zhang T; Wang W; Yuan X; Xu J; Li F
    Mar Environ Res; 2024 Apr; 196():106425. PubMed ID: 38442592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ocean acidification increases cadmium accumulation in marine bivalves: a potential threat to seafood safety.
    Shi W; Zhao X; Han Y; Che Z; Chai X; Liu G
    Sci Rep; 2016 Jan; 6():20197. PubMed ID: 26795597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.