These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 37890449)

  • 1. Two Birds with One Stone: Contemporaneously Enhancing OER Catalytic Activity and Stability for Dual-Phase Medium-Entropy Metal Sulfides.
    Li F; Wu H; Lv S; Ma Y; Wang B; Ren Y; Wang C; Shi Y; Ji H; Gu J; Tang S; Meng X
    Small; 2024 Mar; 20(11):e2309025. PubMed ID: 37890449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Ketjenblack Decorated Pillared Ni(Fe) Metal-Organic Frameworks as Precursor Electrocatalysts for Enhancing the Oxygen Evolution Reaction.
    Beglau THY; Rademacher L; Oestreich R; Janiak C
    Molecules; 2023 May; 28(11):. PubMed ID: 37298940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing bifunctional catalytic activity of cobalt-nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc-air batteries.
    Xu Y; Sumboja A; Groves A; Ashton T; Zong Y; Darr JA
    RSC Adv; 2020 Nov; 10(68):41871-41882. PubMed ID: 35516532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimetallic Sulfide with Controllable Mg Substitution Anchored on CNTs as Hierarchical Bifunctional Catalyst toward Oxygen Catalytic Reactions for Rechargeable Zinc-Air Batteries.
    Guo J; Xu N; Wang Y; Wang X; Huang H; Qiao J
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37164-37172. PubMed ID: 32667803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual Integrating Oxygen and Sulphur on Surface of CoTe Nanorods Triggers Enhanced Oxygen Evolution Reaction.
    Wang X; Mao Z; Mao X; Hu X; Gao F; Gao M; Wu QL; Lyu X; Du A; Xu X; Jia Y; Wang L
    Adv Sci (Weinh); 2023 Mar; 10(9):e2206204. PubMed ID: 36703610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-Organic Frameworks (MOFs) Derived Materials Used in Zn-Air Battery.
    Song D; Hu C; Gao Z; Yang B; Li Q; Zhan X; Tong X; Tian J
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-electrocatalysis behavior of star-like zinc-cobalt-sulfide decorated with cobalt-molybdenum-phosphide in hydrogen and oxygen evolution reactions.
    Shamloofard M; Shahrokhian S
    Nanoscale; 2021 Oct; 13(41):17576-17591. PubMed ID: 34661211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Precursor Route to CuCo
    Zhang R; Hu Z; Cheng S; Ke W; Ning T; Wu J; Fu X; Zhu G
    Inorg Chem; 2021 May; 60(9):6721-6730. PubMed ID: 33861926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Solution-based Method for Synthesizing Pyrite-type Ferrous Metal Sulfide Microspheres with Efficient OER Activity.
    Xiang W; Tian Q; Zhong C; Deng Y; Han X; Hu W
    Chem Asian J; 2020 Jul; 15(14):2231-2238. PubMed ID: 32500645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface engineering triggered by carbon nanotube-supported multiple sulfides for boosting oxygen evolution.
    Chen M; Hu Y; Liang K; Zhao Z; Luo Y; Luo S; Ma J
    Nanoscale; 2021 Nov; 13(44):18763-18772. PubMed ID: 34747966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tetraiodo Fe/Ni phthalocyanine-based molecular catalysts for highly efficient oxygen reduction reaction and oxygen evolution reaction: Constructing a built-in electric field with iodine groups.
    Shen J; Liu Q; Zhang Y; Sun Q; Zhang Y; Li H; Chen Y; Yang G
    J Colloid Interface Sci; 2024 Feb; 655():474-484. PubMed ID: 37952452
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NiMn layered double hydroxides as efficient electrocatalysts for the oxygen evolution reaction and their application in rechargeable Zn-air batteries.
    Sumboja A; Chen J; Zong Y; Lee PS; Liu Z
    Nanoscale; 2017 Jan; 9(2):774-780. PubMed ID: 27976771
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly Active Bifunctional Electrocatalysts for Oxygen Evolution and Reduction in Zn-Air Batteries.
    Kim SW; Son Y; Choi K; Kim SI; Son Y; Park J; Lee JH; Jang JH
    ChemSusChem; 2018 Dec; 11(24):4203-4208. PubMed ID: 30381898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NiCo
    Gangadharan PK; Bhange SN; Kabeer N; Illathvalappil R; Kurungot S
    Nanoscale Adv; 2019 Aug; 1(8):3243-3251. PubMed ID: 36133614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable growth of Fe-doped NiS
    Zhong M; Song N; Li C; Wang C; Chen W; Lu X
    J Colloid Interface Sci; 2022 May; 614():556-565. PubMed ID: 35121514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eight-Component Nanoporous High-Entropy Oxides with Low Ru Contents as High-Performance Bifunctional Catalysts in Zn-Air Batteries.
    Jin Z; Lyu J; Hu K; Chen Z; Xie G; Liu X; Lin X; Qiu HJ
    Small; 2022 Mar; 18(12):e2107207. PubMed ID: 35092348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ni-Fe Nitride Nanoplates on Nitrogen-Doped Graphene as a Synergistic Catalyst for Reversible Oxygen Evolution Reaction and Rechargeable Zn-Air Battery.
    Fan Y; Ida S; Staykov A; Akbay T; Hagiwara H; Matsuda J; Kaneko K; Ishihara T
    Small; 2017 Jul; 13(25):. PubMed ID: 28509363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Sites Regulation for High-Performance Oxygen Evolution Reaction Electrocatalysts.
    Tang Y; Zhang T; Wu X; Deng S
    Front Chem; 2022; 10():889470. PubMed ID: 35572100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FeNi
    Lin S; Yu Y; Sun D; Meng F; Chu W; Huang L; Ren J; Su Q; Ma S; Xu B
    J Colloid Interface Sci; 2022 Feb; 608(Pt 3):2192-2202. PubMed ID: 34785047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nitrogen-doped NiCo2S4/CoO hollow multi-layered heterostructure microsphere for efficient oxygen evolution in Zn-air batteries.
    He B; Song JJ; Li XY; Xu CY; Li YB; Tang YW; Hao QL; Liu HK; Su Z
    Nanoscale; 2021 Jan; 13(2):810-818. PubMed ID: 33351010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.