These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37890563)

  • 1. Detection of regularities in auditory sequences before and at term-age in human neonates.
    Panzani M; Mahmoudzadeh M; Wallois F; Dehaene-Lambertz G
    Neuroimage; 2023 Dec; 284():120428. PubMed ID: 37890563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Maps at the Onset of Auditory Inputs in Very Early Preterm Human Neonates.
    Mahmoudzadeh M; Wallois F; Kongolo G; Goudjil S; Dehaene-Lambertz G
    Cereb Cortex; 2017 Apr; 27(4):2500-2512. PubMed ID: 27102655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encoding of nested levels of acoustic regularity in hierarchically organized areas of the human auditory cortex.
    Recasens M; Grimm S; Wollbrink A; Pantev C; Escera C
    Hum Brain Mapp; 2014 Nov; 35(11):5701-16. PubMed ID: 24996147
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographic comparison of MMN to simple versus pattern regularity violations: The effect of timing.
    Toufan R; Moossavi A; Aghamolaei M; Ashayeri H
    Neurosci Res; 2016 Nov; 112():20-25. PubMed ID: 27349152
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feature-specific transition from positive mismatch response to mismatch negativity in early infancy: mismatch responses to vowels and initial consonants.
    Cheng YY; Wu HC; Tzeng YL; Yang MT; Zhao LL; Lee CY
    Int J Psychophysiol; 2015 May; 96(2):84-94. PubMed ID: 25819712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Auditory learning of recurrent tone sequences is present in the newborn's brain.
    Tóth B; Velősy PK; Kovács P; Háden GP; Polver S; Sziller I; Winkler I
    Neuroimage; 2023 Nov; 281():120384. PubMed ID: 37739198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct neural responses to chord violations: a multiple source analysis study.
    Garza Villarreal EA; Brattico E; Leino S; Ostergaard L; Vuust P
    Brain Res; 2011 May; 1389():103-14. PubMed ID: 21382359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping adaptation, deviance detection, and prediction error in auditory processing.
    Hofmann-Shen C; Vogel BO; Kaffes M; Rudolph A; Brown EC; Tas C; Brüne M; Neuhaus AH
    Neuroimage; 2020 Feb; 207():116432. PubMed ID: 31809886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deviants violating higher-order auditory regularities can become predictive and facilitate behaviour.
    Coy N; Bendixen A; Grimm S; Roeber U; Schröger E
    Atten Percept Psychophys; 2023 Nov; 85(8):2731-2750. PubMed ID: 37532882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preterm neonates distinguish rhythm violation through a hierarchy of cortical processing.
    Edalati M; Mahmoudzadeh M; Ghostine G; Kongolo G; Safaie J; Wallois F; Moghimi S
    Dev Cogn Neurosci; 2022 Dec; 58():101168. PubMed ID: 36335806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern-sensitive neurons reveal encoding of complex auditory regularities in the rat inferior colliculus.
    Malmierca MS; Niño-Aguillón BE; Nieto-Diego J; Porteros Á; Pérez-González D; Escera C
    Neuroimage; 2019 Jan; 184():889-900. PubMed ID: 30296562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ERPs and deviance detection: visual mismatch negativity to repeated visual stimuli.
    Czigler I; Weisz J; Winkler I
    Neurosci Lett; 2006 Jun; 401(1-2):178-82. PubMed ID: 16600495
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal regularity facilitates higher-order sensory predictions in fast auditory sequences.
    Tavano A; Widmann A; Bendixen A; Trujillo-Barreto N; Schröger E
    Eur J Neurosci; 2014 Jan; 39(2):308-18. PubMed ID: 24236753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deviance detection based on regularity encoding along the auditory hierarchy: electrophysiological evidence in humans.
    Escera C; Leung S; Grimm S
    Brain Topogr; 2014 Jul; 27(4):527-38. PubMed ID: 24218032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regularity encoding and deviance detection of frequency modulated sweeps: human middle- and long-latency auditory evoked potentials.
    Cornella M; Leung S; Grimm S; Escera C
    Psychophysiology; 2013 Dec; 50(12):1275-81. PubMed ID: 24016075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The representation of audiovisual regularities in the human brain.
    Besle J; Hussain Z; Giard MH; Bertrand O
    J Cogn Neurosci; 2013 Mar; 25(3):365-73. PubMed ID: 23190327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal dynamics of contingency extraction from tonal and verbal auditory sequences.
    Bendixen A; Schwartze M; Kotz SA
    Brain Lang; 2015 Sep; 148():64-73. PubMed ID: 25512177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy.
    Cornella M; Leung S; Grimm S; Escera C
    PLoS One; 2012; 7(8):e43604. PubMed ID: 22916282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence.
    Doeller CF; Opitz B; Mecklinger A; Krick C; Reith W; Schröger E
    Neuroimage; 2003 Oct; 20(2):1270-82. PubMed ID: 14568496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review.
    Paavilainen P
    Int J Psychophysiol; 2013 May; 88(2):109-23. PubMed ID: 23542165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.