BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37890591)

  • 21. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin.
    Sajeesh S; Bouchemal K; Marsaud V; Vauthier C; Sharma CP
    J Control Release; 2010 Nov; 147(3):377-84. PubMed ID: 20727924
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport and delivery of interferon-α through epithelial tight junctions via pH-responsive poly(methacrylic acid-grafted-ethylene glycol) nanoparticles.
    Caldorera-Moore M; Vela Ramirez JE; Peppas NA
    J Drug Target; 2019; 27(5-6):582-589. PubMed ID: 30457357
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrophilic and Electroneutral Nanoparticles to Overcome Mucus Trapping and Enhance Oral Delivery of Insulin.
    Tan X; Yin N; Liu Z; Sun R; Gou J; Yin T; Zhang Y; He H; Tang X
    Mol Pharm; 2020 Sep; 17(9):3177-3191. PubMed ID: 32697099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complexation hydrogels for oral protein delivery: an in vitro assessment of the insulin transport-enhancing effects following dissolution in simulated digestive fluids.
    Perakslis E; Tuesca A; Lowman A
    J Biomater Sci Polym Ed; 2007; 18(12):1475-90. PubMed ID: 17988515
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery.
    Yang Y; Liu Y; Chen S; Cheong KL; Teng B
    Carbohydr Polym; 2020 Oct; 246():116617. PubMed ID: 32747257
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhancement of oral insulin bioavailability: in vitro and in vivo assessment of nanoporous stimuli-responsive hydrogel microparticles.
    Ahmad N; Mohd Amin MC; Ismail I; Buang F
    Expert Opin Drug Deliv; 2016; 13(5):621-32. PubMed ID: 26943455
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of poly(methacrylic acid-co-N-vinyl pyrrolidone) as a carrier for the oral delivery of therapeutic proteins using Caco-2 and HT29-MTX cell lines.
    Carr DA; Peppas NA
    J Biomed Mater Res A; 2010 Feb; 92(2):504-12. PubMed ID: 19213059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. pH-Responsive poly(itaconic acid-co-N-vinylpyrrolidone) hydrogels with reduced ionic strength loading solutions offer improved oral delivery potential for high isoelectric point-exhibiting therapeutic proteins.
    Koetting MC; Peppas NA
    Int J Pharm; 2014 Aug; 471(1-2):83-91. PubMed ID: 24853463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of cationized triblock and diblock poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers for oral delivery of enoxaparin: In vitro approach.
    Charoongchit P; Suksiriworapong J; Mao S; Sapin-Minet A; Maincent P; Junyaprasert VB
    Acta Biomater; 2017 Oct; 61():180-192. PubMed ID: 28782723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Understanding the Role of Poloxamer 407 based Thermoreversible In Situ Gelling Hydrogel for Delivery of PEGylated Melphalan Conjugate.
    Alexander A; Saraf S; Saraf S
    Curr Drug Deliv; 2016; 13(4):621-30. PubMed ID: 26845559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oral chemotherapeutic delivery: design and cellular response.
    Blanchette J; Peppas NA
    Ann Biomed Eng; 2005 Feb; 33(2):142-9. PubMed ID: 15771268
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Critical determinant of intestinal permeability and oral bioavailability of pegylated all trans-retinoic acid prodrug-based nanomicelles: Chain length of poly (ethylene glycol) corona.
    Li Z; Han X; Zhai Y; Lian H; Zhang D; Zhang W; Wang Y; He Z; Liu Z; Sun J
    Colloids Surf B Biointerfaces; 2015 Jun; 130():133-40. PubMed ID: 25907597
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Complexation hydrogels as potential carriers in oral vaccine delivery systems.
    Yoshida M; Kamei N; Muto K; Kunisawa J; Takayama K; Peppas NA; Takeda-Morishita M
    Eur J Pharm Biopharm; 2017 Mar; 112():138-142. PubMed ID: 27903455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Improved intestinal absorption and oral bioavailability of astaxanthin using poly (ethylene glycol)-graft-chitosan nanoparticles: preparation, in vitro evaluation, and pharmacokinetics in rats.
    Zhu Y; Gu Z; Liao Y; Li S; Xue Y; Firempong MA; Xu Y; Yu J; Smyth HD; Xu X
    J Sci Food Agric; 2022 Feb; 102(3):1002-1011. PubMed ID: 34312873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Application of pH-responsive polymers to oral dosage forms for insulin].
    Morishita M; Takayama K
    Nihon Rinsho; 2001 Nov; 59(11):2255-60. PubMed ID: 11712416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chitosan-PEG nanocapsules as new carriers for oral peptide delivery. Effect of chitosan pegylation degree.
    Prego C; Torres D; Fernandez-Megia E; Novoa-Carballal R; Quiñoá E; Alonso MJ
    J Control Release; 2006 Apr; 111(3):299-308. PubMed ID: 16481062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of pH-responsive hydrogels of poly(itaconic acid-g-ethylene glycol) prepared by UV-initiated free radical polymerization as biomaterials for oral delivery of bioactive agents.
    Betancourt T; Pardo J; Soo K; Peppas NA
    J Biomed Mater Res A; 2010 Apr; 93(1):175-88. PubMed ID: 19536838
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel oral insulin delivery systems based on complexation polymer hydrogels: single and multiple administration studies in type 1 and 2 diabetic rats.
    Morishita M; Goto T; Nakamura K; Lowman AM; Takayama K; Peppas NA
    J Control Release; 2006 Feb; 110(3):587-94. PubMed ID: 16325951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved intestinal delivery of salmon calcitonin by Lys18-amine specific PEGylation: stability, permeability, pharmacokinetic behavior and in vivo hypocalcemic efficacy.
    Youn YS; Jung JY; Oh SH; Yoo SD; Lee KC
    J Control Release; 2006 Sep; 114(3):334-42. PubMed ID: 16884808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery.
    Fan W; Xia D; Zhu Q; Li X; He S; Zhu C; Guo S; Hovgaard L; Yang M; Gan Y
    Biomaterials; 2018 Jan; 151():13-23. PubMed ID: 29055774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.