BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37890895)

  • 1. Association of macular pigment optical density with retinal layer thicknesses in eyes with and without manifest primary open-angle glaucoma.
    Lawler T; Mares JA; Liu Z; Thuruthumaly C; Etheridge T; Vajaranant TS; Domalpally A; Hammond BR; Wallace RB; Tinker LF; Nalbandyan M; Klein BEK; Liu Y; ;
    BMJ Open Ophthalmol; 2023 Oct; 8(1):. PubMed ID: 37890895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lower Macular Pigment Optical Density in Foveal-Involved Glaucoma.
    Siah WF; Loughman J; O'Brien C
    Ophthalmology; 2015 Oct; 122(10):2029-37. PubMed ID: 26249732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macular pigment optical density change analysis in primary open-angle glaucoma and pseudoexfoliation glaucoma.
    Zeki Fikret C; Ucgun NI
    Int Ophthalmol; 2021 Jun; 41(6):2235-2240. PubMed ID: 33759069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foveal Avascular Zone Measurement Via Optical Coherence Tomography Angiography and its Relationship With the Visual Field in Eyes With Open-angle Glaucoma.
    Igarashi R; Ochiai S; Togano T; Sakaue Y; Suetake A; Iikawa R; Honma Y; Miyamoto D; Fukuchi T
    J Glaucoma; 2020 Jun; 29(6):492-497. PubMed ID: 32205832
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmented inner plexiform layer thickness as a potential biomarker to evaluate open-angle glaucoma: Dendritic degeneration of retinal ganglion cell.
    Kim EK; Park HL; Park CK
    PLoS One; 2017; 12(8):e0182404. PubMed ID: 28771565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinal nerve fibre layer and macular thickness analysis with Fourier domain optical coherence tomography in subjects with a positive family history for primary open angle glaucoma.
    Rolle T; Dallorto L; Briamonte C; Penna RR
    Br J Ophthalmol; 2014 Sep; 98(9):1240-4. PubMed ID: 24782474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the Pattern of Macular Ganglion Cell-Inner Plexiform Layer Defect Between Ischemic Optic Neuropathy and Open-Angle Glaucoma.
    Fard MA; Afzali M; Abdi P; Yasseri M; Ebrahimi KB; Moghimi S
    Invest Ophthalmol Vis Sci; 2016 Mar; 57(3):1011-6. PubMed ID: 26962697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of the diagnostic ability of vessel density and structural measurements of optical coherence tomography in primary open angle glaucoma.
    Rao HL; Pradhan ZS; Weinreb RN; Riyazuddin M; Dasari S; Venugopal JP; Puttaiah NK; Rao DA; Devi S; Mansouri K; Webers CA
    PLoS One; 2017; 12(3):e0173930. PubMed ID: 28288185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Segmental Analysis of Macular Layers in Patients With Unilateral Primary Open-Angle Glaucoma.
    Zangalli CS; Ahmed OM; Waisbourd M; H Ali M; Cvintal V; Affel E; Gupta L; Katz LJ; C Sergott R
    J Glaucoma; 2016 Apr; 25(4):e401-7. PubMed ID: 26550975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative analysis of mean retinal thickness measured using SD-OCT in normal young or old age and glaucomatous eyes.
    Jang JW; Lee MW; Cho KJ
    Int Ophthalmol; 2018 Dec; 38(6):2417-2426. PubMed ID: 29027057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repeatability of peripapillary retinal nerve fiber layer and inner retinal thickness among two spectral domain optical coherence tomography devices.
    Matlach J; Wagner M; Malzahn U; Göbel W
    Invest Ophthalmol Vis Sci; 2014 Sep; 55(10):6536-46. PubMed ID: 25228545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Analysis of Microvasculature in Macular and Peripapillary Regions in Early Primary Open-Angle Glaucoma.
    Lu P; Xiao H; Liang C; Xu Y; Ye D; Huang J
    Curr Eye Res; 2020 May; 45(5):629-635. PubMed ID: 31587582
    [No Abstract]   [Full Text] [Related]  

  • 13. [Retinal vessel density in primary open-angle glaucoma with a hemifield defect].
    Wang XL; Sun XH
    Zhonghua Yan Ke Za Zhi; 2021 Mar; 57(3):201-206. PubMed ID: 33721959
    [No Abstract]   [Full Text] [Related]  

  • 14. Ability of Macular Inner Retinal Layer Thickness Asymmetry Evaluated by Optical Coherence Tomography to Detect Preperimetric Glaucoma.
    Takemoto D; Higashide T; Ohkubo S; Udagawa S; Sugiyama K
    Transl Vis Sci Technol; 2020 Apr; 9(5):8. PubMed ID: 32821480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Layer-by-Layer Segmented Ganglion Cell Complex Thickness for Detecting Early Glaucoma According to Different Macular Grids.
    Kim HJ; Park KH; Kim YK; Jeoung JW
    J Glaucoma; 2017 Aug; 26(8):712-717. PubMed ID: 28671919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macular Pigment Optical Density in Chinese Primary Open Angle Glaucoma Using the One-Wavelength Reflectometry Method.
    Ji Y; Zuo C; Lin M; Zhang X; Li M; Mi L; Liu B; Wen F
    J Ophthalmol; 2016; 2016():2792103. PubMed ID: 27144013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Macular ganglion cell/inner plexiform layer measurements by spectral domain optical coherence tomography for detection of early glaucoma and comparison to retinal nerve fiber layer measurements.
    Nouri-Mahdavi K; Nowroozizadeh S; Nassiri N; Cirineo N; Knipping S; Giaconi J; Caprioli J
    Am J Ophthalmol; 2013 Dec; 156(6):1297-1307.e2. PubMed ID: 24075422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of retinal nerve fibre layer and ganglion cell/inner plexiform layers progression rates using two optical coherence tomography systems: The PROGRESSA study.
    Saks D; Schulz A; Craig J; Graham S;
    Clin Exp Ophthalmol; 2020 Sep; 48(7):915-926. PubMed ID: 32643824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A normative database of A-scan data using the Heidelberg Spectralis Spectral Domain Optical Coherence Tomography machine.
    Meyer J; Karri R; Danesh-Meyer H; Drummond K; Symons A
    PLoS One; 2021; 16(7):e0253720. PubMed ID: 34197499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analyzing the impact of glaucoma on the macular architecture using spectral-domain optical coherence tomography.
    Unterlauft JD; Rehak M; Böhm MRR; Rauscher FG
    PLoS One; 2018; 13(12):e0209610. PubMed ID: 30596720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.