These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37891377)

  • 1. Characterization of interaction phenomena of electromagnetic waves with metamaterials via microwave near-field visualization technique.
    Baghdasaryan Z; Babajanyan A; Friedman B; Lee K
    Sci Rep; 2023 Oct; 13(1):18457. PubMed ID: 37891377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D visualization of microwave electric and magnetic fields by using a metasurface-based indicator.
    Baghdasaryan Z; Babajanyan A; Parsamyan H; Friedman B; Kim S; Lee JH; Lee K
    Sci Rep; 2022 Apr; 12(1):6150. PubMed ID: 35414676
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Microwave Field-Induced Nonlinear Metamaterial with Wafer Integration Level.
    Wu Z; Liu P; Lin M; Zha S; Ni X
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16189-16197. PubMed ID: 36921290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three cases of discontinuous refractive index in metamaterial study.
    Wegrowski A; Wang WC; Tsui C
    Sci Rep; 2022 Mar; 12(1):3558. PubMed ID: 35241758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative Index Metamaterial Lens for Subwavelength Microwave Detection.
    Datta S; Mukherjee S; Shi X; Haq M; Deng Y; Udpa L; Rothwell E
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microwave memristive-like nonlinearity in a dielectric metamaterial.
    Wu H; Zhou J; Lan C; Guo Y; Bi K
    Sci Rep; 2014 Jun; 4():5499. PubMed ID: 24975455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Ellipsometric Monitoring of Gold Nanorod Metamaterials Growth.
    Morgan F; Murphy A; Hendren W; Wurtz G; Pollard RJ
    ACS Appl Mater Interfaces; 2017 May; 9(20):17379-17386. PubMed ID: 28475839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transparent coupled membrane metamaterials with simultaneous microwave absorption and sound reduction.
    Song G; Zhang C; Cheng Q; Jing Y; Qiu C; Cui T
    Opt Express; 2018 Sep; 26(18):22916-22925. PubMed ID: 30184948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New equipment for microwave electric field visualization.
    Karpov IA; Shoo ED
    Rev Sci Instrum; 2012 Jul; 83(7):074704. PubMed ID: 22852709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable and transparent broadband metamaterial absorber with water-based substrate for optical window applications.
    Zhang Y; Dong H; Mou N; Li H; Yao X; Zhang L
    Nanoscale; 2021 Apr; 13(16):7831-7837. PubMed ID: 33876797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature and microwave near field imaging by thermo-elastic optical indicator microscopy.
    Lee H; Arakelyan S; Friedman B; Lee K
    Sci Rep; 2016 Dec; 6():39696. PubMed ID: 28004783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave birefringent metamaterials for polarization conversion based on spoof surface plasmon polariton modes.
    Li Y; Zhang J; Ma H; Wang J; Pang Y; Feng D; Xu Z; Qu S
    Sci Rep; 2016 Oct; 6():34518. PubMed ID: 27698443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance broadband electromagnetic interference shielding optical window based on a metamaterial absorber.
    Zhang Y; Dong H; Mou N; Chen L; Li R; Zhang L
    Opt Express; 2020 Aug; 28(18):26836-26849. PubMed ID: 32906950
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between graphene and metamaterials: split rings vs. wire pairs.
    Zou Y; Tassin P; Koschny T; Soukoulis CM
    Opt Express; 2012 May; 20(11):12198-204. PubMed ID: 22714208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of two invisibility cloaks using transmissive and reflective metamaterial-based multilayer frame microstructures.
    Jing X; Feng D; Tian Y; Li M; Chu C; Li C; He Y; Gan H; Hong Z
    Opt Express; 2020 Nov; 28(24):35528-35539. PubMed ID: 33379666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wide-angle transmissions of electromagnetic fields through the sandwiched transparent epsilon-near-zero metamaterial screen.
    Yang R; Yang P; Chen Y; Li J; Lei Z
    Opt Lett; 2018 Jan; 43(1):5-8. PubMed ID: 29328227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared.
    Ou JY; Plum E; Zhang J; Zheludev NI
    Nat Nanotechnol; 2013 Apr; 8(4):252-5. PubMed ID: 23503091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold.
    Strikwerda AC; Zalkovskij M; Iwaszczuk K; Lorenzen DL; Jepsen PU
    Opt Express; 2015 May; 23(9):11586-99. PubMed ID: 25969252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual-band polarization convertor based on electromagnetically induced transparency (EIT) effect in all-dielectric metamaterial.
    Zhu L; Zhao X; Miao FJ; Ghosh BK; Dong L; Tao BR; Meng FY; Li WN
    Opt Express; 2019 Apr; 27(9):12163-12170. PubMed ID: 31052760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave Metamaterial Absorbers with Controllable Luminescence Features.
    Chen W; Zhan J; Zhou Y; Chen R; Wang Y; Ma Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54497-54502. PubMed ID: 34726392
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.