These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37891377)

  • 21. A transparent metamaterial to manipulate electromagnetic wave polarizations.
    Sun W; He Q; Hao J; Zhou L
    Opt Lett; 2011 Mar; 36(6):927-9. PubMed ID: 21403731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Design and experimental validation of a finite-size labyrinthine metamaterial for vibro-acoustics: enabling upscaling towards large-scale structures.
    Hermann S; Billon K; Parlak AM; Orlowsky J; Collet M; Madeo A
    Philos Trans A Math Phys Eng Sci; 2024 Sep; 382(2278):20230367. PubMed ID: 39069763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Controlling the Electromagnetic Field Confinement with Metamaterials.
    Bonache J; Zamora G; Paredes F; Zuffanelli S; Aguilà P; Martín F
    Sci Rep; 2016 Nov; 6():37739. PubMed ID: 27886230
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visualization of microwave near-field distribution in sodium chloride and glucose aqueous solutions by a thermo-elastic optical indicator microscope.
    Baghdasaryan Z; Babajanyan A; Odabashyan L; Lee JH; Friedman B; Lee K
    Sci Rep; 2021 Jan; 11(1):2589. PubMed ID: 33510224
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Design of an Ultra-Wideband Transparent Wave Absorber.
    Dai H; Li S; Dong P; Ma Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultra-wideband and Polarization-Insensitive Perfect Absorber Using Multilayer Metamaterials, Lumped Resistors, and Strong Coupling Effects.
    Li SJ; Wu PX; Xu HX; Zhou YL; Cao XY; Han JF; Zhang C; Yang HH; Zhang Z
    Nanoscale Res Lett; 2018 Nov; 13(1):386. PubMed ID: 30498863
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Deep subwavelength ultrasonic imaging using optimized holey structured metamaterials.
    Amireddy KK; Balasubramaniam K; Rajagopal P
    Sci Rep; 2017 Aug; 7(1):7777. PubMed ID: 28798469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metamaterial shields for inner protection and outer tuning through a relaxed micromorphic approach.
    Rizzi G; Neff P; Madeo A
    Philos Trans A Math Phys Eng Sci; 2022 Sep; 380(2231):20210400. PubMed ID: 35858081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Asymmetric Transmission in a Mie-Based Dielectric Metamaterial with Fano Resonance.
    Wang X; Li H; Zhou J
    Materials (Basel); 2019 Mar; 12(7):. PubMed ID: 30934666
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Looking into meta-atoms of plasmonic nanowire metamaterial.
    Tsai KT; Wurtz GA; Chu JY; Cheng TY; Wang HH; Krasavin AV; He JH; Wells BM; Podolskiy VA; Wang JK; Wang YL; Zayats AV
    Nano Lett; 2014 Sep; 14(9):4971-6. PubMed ID: 25115592
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inherent Temporal Metamaterials with Unique Time-Varying Stiffness and Damping.
    Liu Z; Yi K; Sun H; Zhu R; Zhou X; Hu G; Huang G
    Adv Sci (Weinh); 2024 Sep; ():e2404695. PubMed ID: 39319607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Manipulating electromagnetic wave polarizations by anisotropic metamaterials.
    Hao J; Yuan Y; Ran L; Jiang T; Kong JA; Chan CT; Zhou L
    Phys Rev Lett; 2007 Aug; 99(6):063908. PubMed ID: 17930829
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optically Transparent Flexible Broadband Metamaterial Absorber Based on Topology Optimization Design.
    Min P; Song Z; Yang L; Ralchenko VG; Zhu J
    Micromachines (Basel); 2021 Nov; 12(11):. PubMed ID: 34832829
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tuning Metamaterials by using Amorphous Magnetic Microwires.
    Lopez-Dominguez V; Garcia MA; Marin P; Hernando A
    Sci Rep; 2017 Aug; 7(1):9394. PubMed ID: 28839260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dielectric coated conductive rod resonantly coupled with a cut transmission line as a tunable microwave bandstop filter and sensor.
    Hambaryan D; Abrahamyan T; Parsamyan H; Movsisyan A; Minasyan B; Haroyan H; Babajanyan A; Lee K; Friedman B; Nerkararyan K
    Heliyon; 2024 Jan; 10(2):e24477. PubMed ID: 38293417
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves.
    Liu S; Cui TJ; Xu Q; Bao D; Du L; Wan X; Tang WX; Ouyang C; Zhou XY; Yuan H; Ma HF; Jiang WX; Han J; Zhang W; Cheng Q
    Light Sci Appl; 2016 May; 5(5):e16076. PubMed ID: 30167164
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optically transparent microwave absorber based on water-based moth-eye structures.
    Kwon H; D'Aguanno G; Alú A
    Opt Express; 2021 Mar; 29(6):9190-9198. PubMed ID: 33820351
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid customized design of a conformal optical transparent metamaterial absorber based on the circuit analog optimization method.
    Dong L; Si L; Xu H; Shen Q; Lv X; Zhuang Y; Zhang Q
    Opt Express; 2022 Feb; 30(5):8303-8316. PubMed ID: 35299574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Lateral magnetic near-field imaging of plasmonic nanoantennas with increasing complexity.
    Denkova D; Verellen N; Silhanek AV; Van Dorpe P; Moshchalkov VV
    Small; 2014 May; 10(10):1959-66. PubMed ID: 24590985
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband microwave coding metamaterial absorbers.
    Tran MC; Pham VH; Ho TH; Nguyen TT; Do HT; Bui XK; Bui ST; Le DT; Pham TL; Vu DL
    Sci Rep; 2020 Feb; 10(1):1810. PubMed ID: 32020003
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.