These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 37891377)

  • 41. Characterization of magnetic materials using a scanning microwave microprobe.
    Melikyan H; Hovsepyan A; Sargsyan T; Yoon Y; Yoo H; Babajanyan A; Lee K
    Ultramicroscopy; 2008 Sep; 108(10):1030-3. PubMed ID: 18547730
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies.
    Liu R; Cheng Q; Hand T; Mock JJ; Cui TJ; Cummer SA; Smith DR
    Phys Rev Lett; 2008 Jan; 100(2):023903. PubMed ID: 18232869
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Broadband electromagnetic cloaking with smart metamaterials.
    Shin D; Urzhumov Y; Jung Y; Kang G; Baek S; Choi M; Park H; Kim K; Smith DR
    Nat Commun; 2012; 3():1213. PubMed ID: 23169054
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber.
    Zhu B; Feng Y; Zhao J; Huang C; Wang Z; Jiang T
    Opt Express; 2010 Oct; 18(22):23196-203. PubMed ID: 21164660
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Metamaterial electromagnetic wave absorbers.
    Watts CM; Liu X; Padilla WJ
    Adv Mater; 2012 Jun; 24(23):OP98-120, OP181. PubMed ID: 22627995
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metamaterials for remote generation of spatially controllable two dimensional array of microplasma.
    Singh PK; Hopwood J; Sonkusale S
    Sci Rep; 2014 Aug; 4():5964. PubMed ID: 25098976
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Broadband Bi-Directional Polarization-Insensitive Metamaterial Absorber.
    Tian F; Ma X; Hao H; Li X; Fan J; Guo L; Huang X
    Materials (Basel); 2021 Nov; 14(23):. PubMed ID: 34885498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Negative-index metamaterial with polymer-embedded wire-pair structures at terahertz frequencies.
    Awad M; Nagel M; Kurz H
    Opt Lett; 2008 Nov; 33(22):2683-5. PubMed ID: 19015708
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating.
    Jiang ZH; Yun S; Toor F; Werner DH; Mayer TS
    ACS Nano; 2011 Jun; 5(6):4641-7. PubMed ID: 21456579
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Broadband angle- and permittivity-insensitive nondispersive optical activity based on planar chiral metamaterials.
    Song K; Su Z; Wang M; Silva S; Bhattarai K; Ding C; Liu Y; Luo C; Zhao X; Zhou J
    Sci Rep; 2017 Sep; 7(1):10730. PubMed ID: 28878332
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A single-phase elastic hyperbolic metamaterial with anisotropic mass density.
    Zhu R; Chen YY; Wang YS; Hu GK; Huang GL
    J Acoust Soc Am; 2016 Jun; 139(6):3303. PubMed ID: 27369155
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of surface electromagnetic waves in metamaterial absorbers.
    Chen WC; Cardin A; Koirala M; Liu X; Tyler T; West KG; Bingham CM; Starr T; Starr AF; Jokerst NM; Padilla WJ
    Opt Express; 2016 Mar; 24(6):6783-92. PubMed ID: 27136864
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Asymmetric transmission of linearly polarized waves based on Mie resonance in all-dielectric terahertz metamaterials.
    Rao Y; Pan L; Ouyang C; Xu Q; Liu L; Li Y; Gu J; Tian Z; Han J; Zhang W
    Opt Express; 2020 Sep; 28(20):29855-29864. PubMed ID: 33114875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Ultra-wideband microwave absorber by connecting multiple absorption bands of two different-sized hyperbolic metamaterial waveguide arrays.
    Yin X; Long C; Li J; Zhu H; Chen L; Guan J; Li X
    Sci Rep; 2015 Oct; 5():15367. PubMed ID: 26477740
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Sub-wavelength energy trapping of elastic waves in a metamaterial.
    Colombi A; Roux P; Rupin M
    J Acoust Soc Am; 2014 Aug; 136(2):EL192-8. PubMed ID: 25096146
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microwave magnetoelectric fields and their role in the matter-field interaction.
    Kamenetskii EO; Joffe R; Shavit R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023201. PubMed ID: 23496631
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Weather-Manipulated Smart Broadband Electromagnetic Metamaterials.
    Zhang KL; Cheng XD; Zhang YJ; Chen M; Chen H; Yang Y; Song WL; Fang D
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40815-40823. PubMed ID: 30384586
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Wave Propagation in Composites of Plasma and Metamaterials with Negative Permittivity and Permeability.
    Kim H; Hopwood J
    Sci Rep; 2019 Feb; 9(1):3024. PubMed ID: 30816256
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Rotationally reconfigurable metamaterials based on moirĂ© phenomenon.
    Han JH; Kim I; Ryu JW; Kim J; Cho JH; Yim GS; Park HS; Min B; Choi M
    Opt Express; 2015 Jun; 23(13):17443-9. PubMed ID: 26191753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.