These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37891734)

  • 1. Non-Invasive Continuous Optical Monitoring of Cerebral Blood Flow after Traumatic Brain Injury in Mice Using Fiber Camera-Based Speckle Contrast Optical Spectroscopy.
    Langri DS; Sunar U
    Brain Sci; 2023 Sep; 13(10):. PubMed ID: 37891734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparing the performance potential of speckle contrast optical spectroscopy and diffuse correlation spectroscopy for cerebral blood flow monitoring using Monte Carlo simulations in realistic head geometries.
    Robinson MB; Cheng TY; Renna M; Wu MM; Kim B; Cheng X; Boas DA; Franceschini MA; Carp SA
    Neurophotonics; 2024 Jan; 11(1):015004. PubMed ID: 38282721
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-wavelength laser speckle imaging for monitoring brain metabolic and hemodynamic response to closed head traumatic brain injury in mice.
    Kofman I; Abookasis D
    J Biomed Opt; 2015 Oct; 20(10):106009. PubMed ID: 26502232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compact and cost-effective laser-powered speckle contrast optical spectroscopy fiber-free device for measuring cerebral blood flow.
    Huang YX; Mahler S; Dickson M; Abedi A; Tyszka JM; Lo YT; Russin J; Liu C; Yang C
    J Biomed Opt; 2024 Jun; 29(6):067001. PubMed ID: 38826808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Wearable Fiberless Optical Sensor for Continuous Monitoring of Cerebral Blood Flow in Mice.
    Huang C; Gu Y; Chen J; Bahrani AA; Abu Jawdeh EG; Bada HS; Saatman K; Yu G; Chen L
    IEEE J Sel Top Quantum Electron; 2019; 25(1):. PubMed ID: 31666792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Brain Hypoxia Based on Noninvasive Optical Monitoring of Cerebral Blood Flow with Diffuse Correlation Spectroscopy.
    Busch DR; Balu R; Baker WB; Guo W; He L; Diop M; Milej D; Kavuri V; Amendolia O; St Lawrence K; Yodh AG; Kofke WA
    Neurocrit Care; 2019 Feb; 30(1):72-80. PubMed ID: 30030667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable fiber-free optical sensor for continuous monitoring of neonatal cerebral blood flow and oxygenation.
    Liu X; Mohtasebi M; Safavi P; Fathi F; Haratbar SR; Chen L; Chen J; Bada HS; Chen L; Abu Jawdeh EG; Yu G
    Pediatr Res; 2024 Mar; ():. PubMed ID: 38503982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Choosing a camera and optimizing system parameters for speckle contrast optical spectroscopy.
    Cheng TY; Kim B; Zimmermann BB; Robinson MB; Renna M; Carp SA; Franceschini MA; Boas DA; Cheng X
    Sci Rep; 2024 May; 14(1):11915. PubMed ID: 38789499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Wearable Fiber-Free Optical Sensor for Continuous Monitoring of Neonatal Cerebral Blood Flow and Oxygenation.
    Liu X; Mohtasebi M; Safavi P; Fathi F; Haratbar SR; Chen L; Chen J; Bada HS; Chen L; Abu Jawdeh EG; Yu G
    medRxiv; 2023 Sep; ():. PubMed ID: 37790418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measuring human cerebral blood flow and brain function with fiber-based speckle contrast optical spectroscopy system.
    Kim B; Zilpelwar S; Sie EJ; Marsili F; Zimmermann B; Boas DA; Cheng X
    Commun Biol; 2023 Aug; 6(1):844. PubMed ID: 37580382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of cerebral perfusion in the peri-contusional cortex in mice revealed by in vivo laser speckle imaging after traumatic brain injury.
    Liu H; He J; Zhang Z; Liu L; Huo G; Sun X; Cheng C
    Brain Res; 2018 Dec; 1700():118-125. PubMed ID: 29990491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Model of dynamic speckle evolution for evaluating laser speckle contrast measurements of tissue dynamics.
    Zilpelwar S; Sie EJ; Postnov D; Chen AI; Zimmermann B; Marsili F; Boas DA; Cheng X
    Biomed Opt Express; 2022 Dec; 13(12):6533-6549. PubMed ID: 36589566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous non-invasive optical monitoring of cerebral blood flow and oxidative metabolism after acute brain injury.
    Baker WB; Balu R; He L; Kavuri VC; Busch DR; Amendolia O; Quattrone F; Frangos S; Maloney-Wilensky E; Abramson K; Mahanna Gabrielli E; Yodh AG; Andrew Kofke W
    J Cereb Blood Flow Metab; 2019 Aug; 39(8):1469-1485. PubMed ID: 31088234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speckle contrast optical spectroscopy, a non-invasive, diffuse optical method for measuring microvascular blood flow in tissue.
    Valdes CP; Varma HM; Kristoffersen AK; Dragojevic T; Culver JP; Durduran T
    Biomed Opt Express; 2014 Aug; 5(8):2769-84. PubMed ID: 25136500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A compact and cost-effective laser-powered speckle visibility spectroscopy (SVS) device for measuring cerebral blood flow.
    Huang YX; Mahler S; Dickson M; Abedi A; Tyszka JM; Lo YT; Russin J; Liu C; Yang C
    ArXiv; 2024 Feb; ():. PubMed ID: 38351942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive Optical Monitoring of Cerebral Blood Flow and EEG Spectral Responses after Severe Traumatic Brain Injury: A Case Report.
    Poon CS; Rinehart B; Langri DS; Rambo TM; Miller AJ; Foreman B; Sunar U
    Brain Sci; 2021 Aug; 11(8):. PubMed ID: 34439712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of novel diffuse optical spectroscopies for improved neuromonitoring during neonatal cardiac surgery requiring antegrade cerebral perfusion.
    Shaw K; Mavroudis CD; Ko TS; Jahnavi J; Jacobwitz M; Ranieri N; Forti RM; Melchior RW; Baker WB; Yodh AG; Licht DJ; Nicolson SC; Lynch JM
    Front Pediatr; 2023; 11():1125985. PubMed ID: 37425272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-mode fiber-based speckle contrast optical spectroscopy: analysis of speckle statistics.
    Lin CP; Orukari I; Tracy C; Frisk LK; Verma M; Chetia S; Durduran T; Trobaugh JW; Culver JP
    Opt Lett; 2023 Mar; 48(6):1427-1430. PubMed ID: 36946944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low cerebral blood flow is a non-invasive biomarker of neuroinflammation after repetitive mild traumatic brain injury.
    Sankar SB; Pybus AF; Liew A; Sanders B; Shah KJ; Wood LB; Buckley EM
    Neurobiol Dis; 2019 Apr; 124():544-554. PubMed ID: 30592976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical Spreading Depolarization, Blood Flow, and Cognitive Outcomes in a Closed Head Injury Mouse Model of Traumatic Brain Injury.
    Mosley N; Chung JY; Jin G; Franceschini MA; Whalen MJ; Chung DY
    Neurocrit Care; 2022 Jun; 37(Suppl 1):102-111. PubMed ID: 35378664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.