These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37891776)

  • 21. The organization of eye and limb movements during unrestricted reaching to targets in contralateral and ipsilateral visual space.
    Fisk JD; Goodale MA
    Exp Brain Res; 1985; 60(1):159-78. PubMed ID: 4043274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sensory trick efficacy in cervical dystonia is linked to processing of neck proprioception.
    Brugger F; Peters A; Georgiev D; Kägi G; Balint B; Bhatia KP; Day BL
    Parkinsonism Relat Disord; 2019 Apr; 61():50-56. PubMed ID: 30553617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proprioceptive population coding of two-dimensional limb movements in humans: I. Muscle spindle feedback during spatially oriented movements.
    Bergenheim M; Ribot-Ciscar E; Roll JP
    Exp Brain Res; 2000 Oct; 134(3):301-10. PubMed ID: 11045355
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of vibration-induced postural illusion on anticipatory postural adjustment of voluntary arm movement in standing humans.
    Kasai T; Yahagi S; Shimura K
    Gait Posture; 2002 Feb; 15(1):94-100. PubMed ID: 11809585
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sensorimotor and perceptual function of muscle proprioception in microgravity.
    Roll JP; Popov K; Gurfinkel V; Lipshits M; André-Deshays C; Gilhodes JC; Quoniam C
    J Vestib Res; 1993; 3(3):259-73. PubMed ID: 8275261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neck muscle vibration and spatial orientation during stepping in place in humans.
    Bove M; Courtine G; Schieppati M
    J Neurophysiol; 2002 Nov; 88(5):2232-41. PubMed ID: 12424265
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stance- and locomotion-dependent processing of vibration-induced proprioceptive inflow from multiple muscles in humans.
    Courtine G; De Nunzio AM; Schmid M; Beretta MV; Schieppati M
    J Neurophysiol; 2007 Jan; 97(1):772-9. PubMed ID: 17065250
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Somatosensory target information is used for reaching but not for saccadic eye movements.
    Goettker A; Fiehler K; Voudouris D
    J Neurophysiol; 2020 Oct; 124(4):1092-1102. PubMed ID: 32845193
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensory inflow manipulation induces learning-like phenomena in motor behavior.
    Contemori S; Dieni CV; Sullivan JA; Ferraresi A; Occhigrossi C; Calabrese F; Pettorossi VE; Biscarini A; Panichi R
    Eur J Appl Physiol; 2020 Apr; 120(4):811-828. PubMed ID: 32062702
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differences between body movement adaptation to calf and neck muscle vibratory proprioceptive stimulation.
    Gomez S; Patel M; Magnusson M; Johansson L; Einarsson EJ; Fransson PA
    Gait Posture; 2009 Jul; 30(1):93-9. PubMed ID: 19398340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The perception of body orientation after neck-proprioceptive stimulation. Effects of time and of visual cueing.
    Karnath HO; Reich E; Rorden C; Fetter M; Driver J
    Exp Brain Res; 2002 Apr; 143(3):350-8. PubMed ID: 11889513
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Proprioceptive consequences of tendon vibration during movement.
    Cordo P; Gurfinkel VS; Bevan L; Kerr GK
    J Neurophysiol; 1995 Oct; 74(4):1675-88. PubMed ID: 8989404
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interaction of visual and proprioceptive inputs in pointing to actual and remembered targets in Parkinson's disease.
    Adamovich SV; Berkinblit MB; Hening W; Sage J; Poizner H
    Neuroscience; 2001; 104(4):1027-41. PubMed ID: 11457588
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject.
    Messier J; Adamovich S; Berkinblit M; Tunik E; Poizner H
    Exp Brain Res; 2003 Jun; 150(4):399-416. PubMed ID: 12739083
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proprioceptive Augmentation With Illusory Kinaesthetic Sensation in Stroke Patients Improves Movement Quality in an Active Upper Limb Reach-and-Point Task.
    Ferrari F; Shell CE; Thumser ZC; Clemente F; Plow EB; Cipriani C; Marasco PD
    Front Neurorobot; 2021; 15():610673. PubMed ID: 33732129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of eccentric exercise-induced fatigue on position sense during goal-directed movement.
    Grose G; Manzone DM; Eschelmuller G; Peters RM; Carpenter MG; Inglis JT; Chua R
    J Appl Physiol (1985); 2022 Apr; 132(4):1005-1019. PubMed ID: 35271409
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vestibular contributions to online reach execution are processed via mechanisms with knowledge about limb biomechanics.
    Martin CZ; Lapierre P; Haché S; Lucien D; Green AM
    J Neurophysiol; 2021 Apr; 125(4):1022-1045. PubMed ID: 33502952
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neck proprioception shapes body orientation and perception of motion.
    Pettorossi VE; Schieppati M
    Front Hum Neurosci; 2014; 8():895. PubMed ID: 25414660
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Late integration of vision and proprioception during perturbed reaches.
    Keyser J; Medendorp WP; Oostwoud Wijdenes L; Selen LPJ
    J Neurophysiol; 2023 Jun; 129(6):1282-1292. PubMed ID: 37073978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lasting improvements in left spatial neglect following a protocol combining neck-muscle vibration and voluntary arm movements: a case-study.
    Ceyte H; Beis JM; Simon M; Rémy A; Anxionnat R; Paysant J; Caudron S
    Disabil Rehabil; 2019 Jun; 41(12):1475-1483. PubMed ID: 29357710
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.