These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 3789184)

  • 1. Generalization of the Fahraeus principle for microvessel networks.
    Pries AR; Ley K; Gaehtgens P
    Am J Physiol; 1986 Dec; 251(6 Pt 2):H1324-32. PubMed ID: 3789184
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blood flow in microvascular networks. Experiments and simulation.
    Pries AR; Secomb TW; Gaehtgens P; Gross JF
    Circ Res; 1990 Oct; 67(4):826-34. PubMed ID: 2208609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological structure of rat mesenteric microvessel networks.
    Ley K; Pries AR; Gaehtgens P
    Microvasc Res; 1986 Nov; 32(3):315-32. PubMed ID: 3796305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hematocrit fluctuations within capillary tubes and estimation of Fåhraeus effect.
    Secomb TW; Pries AR; Gaehtgens P
    Int J Microcirc Clin Exp; 1987; 5(4):335-45. PubMed ID: 3557819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redistribution of red blood cell flow in microcirculatory networks by hemodilution.
    Pries AR; Fritzsche A; Ley K; Gaehtgens P
    Circ Res; 1992 Jun; 70(6):1113-21. PubMed ID: 1576733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Red cell distribution at microvascular bifurcations.
    Pries AR; Ley K; Claassen M; Gaehtgens P
    Microvasc Res; 1989 Jul; 38(1):81-101. PubMed ID: 2761434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microvascular blood viscosity in vivo and the endothelial surface layer.
    Pries AR; Secomb TW
    Am J Physiol Heart Circ Physiol; 2005 Dec; 289(6):H2657-64. PubMed ID: 16040719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of feeding hematocrit and perfusion pressure on hematocrit reduction (Fåhraeus effect) in an artificial microvascular network.
    Reinhart WH; Piety NZ; Shevkoplyas SS
    Microcirculation; 2017 Nov; 24(8):. PubMed ID: 28801994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the hematocrit distribution in the mesenteric microcirculation.
    Kanzow G; Pries AR; Gaehtgens P
    Int J Microcirc Clin Exp; 1982; 1(1):67-79. PubMed ID: 7188443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo measurements of "apparent viscosity" and microvessel hematocrit in the mesentery of the cat.
    Lipowsky HH; Usami S; Chien S
    Microvasc Res; 1980 May; 19(3):297-319. PubMed ID: 7382851
    [No Abstract]   [Full Text] [Related]  

  • 11. Capillary resistance to flow of hardened (diamide treated)red blood cells (RBC).
    Driessen GK; Scheidt-Bleichert H; Sobota A; Inhoffen W; Heidtmann H; Haest CW; Kamp D; Schmid-Schönbein H
    Pflugers Arch; 1982 Jan; 392(3):261-7. PubMed ID: 7070956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential distribution of leukocytes in rat mesentery microvessel networks.
    Ley K; Pries AR; Gaehtgens P
    Pflugers Arch; 1988 Jul; 412(1-2):93-100. PubMed ID: 3174389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure and hemodynamics of microvascular networks: heterogeneity and correlations.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1995 Nov; 269(5 Pt 2):H1713-22. PubMed ID: 7503269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observations on the accuracy of photometric techniques used to measure some in vivo microvascular blood flow parameters.
    Cokelet GR; Pries AR; Kiani MF
    Microcirculation; 1998; 5(1):61-70. PubMed ID: 9702723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheology of the microcirculation.
    Pries AR; Secomb TW
    Clin Hemorheol Microcirc; 2003; 29(3-4):143-8. PubMed ID: 14724335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relationship between structural and hemodynamic heterogeneity in microvascular networks.
    Pries AR; Secomb TW; Gaehtgens P
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H545-53. PubMed ID: 8779829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance to blood flow in microvessels in vivo.
    Pries AR; Secomb TW; Gessner T; Sperandio MB; Gross JF; Gaehtgens P
    Circ Res; 1994 Nov; 75(5):904-15. PubMed ID: 7923637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of dispersion of vessel diameters and lengths in stochastic networks. II. Modeling of microvascular hematocrit distribution.
    Levin M; Dawant B; Popel AS
    Microvasc Res; 1986 Mar; 31(2):223-34. PubMed ID: 3702770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compaction stasis due to gravitational red cell migration and floatational plasma skimming. Reversal of the fahraeus effect due to pathological RCA-formation in plastic tubes and mesenteric venules.
    Göbel W; Perkkiö J; Schmid-Schönbein H
    Virchows Arch A Pathol Anat Histopathol; 1989; 415(3):243-51. PubMed ID: 2503926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.