These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37892087)

  • 1. Deep Features from Pretrained Networks Do Not Outperform Hand-Crafted Features in Radiomics.
    Demircioğlu A
    Diagnostics (Basel); 2023 Oct; 13(20):. PubMed ID: 37892087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive performance of radiomic models based on features extracted from pretrained deep networks.
    Demircioğlu A
    Insights Imaging; 2022 Dec; 13(1):187. PubMed ID: 36484873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation.
    Lee H; Hong H; Kim J; Jung DC
    Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer-Learning Deep Radiomics and Hand-Crafted Radiomics for Classifying Lymph Nodes from Contrast-Enhanced Computed Tomography in Lung Cancer.
    Laqua FC; Woznicki P; Bley TA; Schöneck M; Rinneburger M; Weisthoff M; Schmidt M; Persigehl T; Iuga AI; Baeßler B
    Cancers (Basel); 2023 May; 15(10):. PubMed ID: 37345187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeted transfer learning to improve performance in small medical physics datasets.
    Romero M; Interian Y; Solberg T; Valdes G
    Med Phys; 2020 Dec; 47(12):6246-6256. PubMed ID: 33007112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of acute and chronic vertebral compression fractures using conventional CT based on deep transfer learning features and hand-crafted radiomics features.
    Zhang J; Liu J; Liang Z; Xia L; Zhang W; Xing Y; Zhang X; Tang G
    BMC Musculoskelet Disord; 2023 Mar; 24(1):165. PubMed ID: 36879285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An intelligence design for detection and classification of COVID19 using fusion of classical and convolutional neural network and improved microscopic features selection approach.
    Amin J; Anjum MA; Sharif M; Saba T; Tariq U
    Microsc Res Tech; 2021 Oct; 84(10):2254-2267. PubMed ID: 33964096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-Supervised Learning for Feature Extraction from Glomerular Images and Disease Classification with Minimal Annotations.
    Abe M; Niioka H; Matsumoto A; Katsuma Y; Imai A; Okushima H; Ozaki S; Fujii N; Oka K; Sakaguchi Y; Inoue K; Isaka Y; Matsui I
    J Am Soc Nephrol; 2024 Oct; ():. PubMed ID: 39382977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developing and validating a deep learning and radiomic model for glioma grading using multiplanar reconstructed magnetic resonance contrast-enhanced T1-weighted imaging: a robust, multi-institutional study.
    Ding J; Zhao R; Qiu Q; Chen J; Duan J; Cao X; Yin Y
    Quant Imaging Med Surg; 2022 Feb; 12(2):1517-1528. PubMed ID: 35111644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation of Brain Abscess From Cystic Glioma Using Conventional MRI Based on Deep Transfer Learning Features and Hand-Crafted Radiomics Features.
    Bo L; Zhang Z; Jiang Z; Yang C; Huang P; Chen T; Wang Y; Yu G; Tan X; Cheng Q; Li D; Liu Z
    Front Med (Lausanne); 2021; 8():748144. PubMed ID: 34869438
    [No Abstract]   [Full Text] [Related]  

  • 11. Predicting malignant nodules by fusing deep features with classical radiomics features.
    Paul R; Hawkins SH; Schabath MB; Gillies RJ; Hall LO; Goldgof DB
    J Med Imaging (Bellingham); 2018 Jan; 5(1):011021. PubMed ID: 29594181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.
    Dai H; Lu M; Huang B; Tang M; Pang T; Liao B; Cai H; Huang M; Zhou Y; Chen X; Ding H; Feng ST
    Quant Imaging Med Surg; 2021 May; 11(5):1836-1853. PubMed ID: 33936969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of Obliteration After the Gamma Knife Radiosurgery of Arteriovenous Malformations Using Hand-Crafted Radiomics and Deep-Learning Methods.
    Wu DJ; Kollitz M; Ward M; Dharnipragada RS; Gupta R; Sabal LT; Singla A; Tummala R; Dusenbery K; Watanabe Y
    Cureus; 2024 Apr; 16(4):e58835. PubMed ID: 38784357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diagnostic Performance of 2D and 3D T2WI-Based Radiomics Features With Machine Learning Algorithms to Distinguish Solid Solitary Pulmonary Lesion.
    Wan Q; Zhou J; Xia X; Hu J; Wang P; Peng Y; Zhang T; Sun J; Song Y; Yang G; Li X
    Front Oncol; 2021; 11():683587. PubMed ID: 34868905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential autoencoders for feature engineering and pretraining in major depressive disorder risk prediction.
    Jones BW; Taylor WD; Walsh CG
    JAMIA Open; 2023 Dec; 6(4):ooad086. PubMed ID: 37818308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing the Ability of Convolutional Neural Networks to Learn Radiomic Features.
    Klyuzhin IS; Xu Y; Ortiz A; Ferres JL; Hamarneh G; Rahmim A
    Comput Methods Programs Biomed; 2022 Jun; 219():106750. PubMed ID: 35381490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generative models improve radiomics performance in different tasks and different datasets: An experimental study.
    Chen J; Bermejo I; Dekker A; Wee L
    Phys Med; 2022 Jun; 98():11-17. PubMed ID: 35468494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphasic CT-Based Radiomics Analysis for the Differentiation of Benign and Malignant Parotid Tumors.
    Yu Q; Wang A; Gu J; Li Q; Ning Y; Peng J; Lv F; Zhang X
    Front Oncol; 2022; 12():913898. PubMed ID: 35847942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine and Deep Learning Based Radiomics Models for Preoperative Prediction of Benign and Malignant Sacral Tumors.
    Yin P; Mao N; Chen H; Sun C; Wang S; Liu X; Hong N
    Front Oncol; 2020; 10():564725. PubMed ID: 33178593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.