These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 37892860)

  • 1. Effect of Ligament Fibers on Dynamics of Synthetic, Self-Oscillating Vocal Folds in a Biomimetic Larynx Model.
    Tur B; Gühring L; Wendler O; Schlicht S; Drummer D; Kniesburges S
    Bioengineering (Basel); 2023 Sep; 10(10):. PubMed ID: 37892860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting Achievable Fundamental Frequency Ranges in Vocalization Across Species.
    Titze I; Riede T; Mau T
    PLoS Comput Biol; 2016 Jun; 12(6):e1004907. PubMed ID: 27309543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental study of vocal-ventricular fold oscillations in voice production.
    Matsumoto T; Kanaya M; Ishimura K; Tokuda IT
    J Acoust Soc Am; 2021 Jan; 149(1):271. PubMed ID: 33514158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical study of the effects of various laryngeal configurations on the acoustics of phonation.
    Titze IR; Talkin DT
    J Acoust Soc Am; 1979 Jul; 66(1):60-74. PubMed ID: 489833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative histology and vibration of the vocal folds: implications for experimental studies in microlaryngeal surgery.
    Garrett CG; Coleman JR; Reinisch L
    Laryngoscope; 2000 May; 110(5 Pt 1):814-24. PubMed ID: 10807360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Influence of Fiber Orientation of the Conus Elasticus in Vocal Fold Modeling.
    Wang X; Zheng X; Xue Q
    J Biomech Eng; 2023 Sep; 145(9):. PubMed ID: 37216309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of asymmetric superior laryngeal nerve stimulation on glottic posture, acoustics, vibration.
    Chhetri DK; Neubauer J; Bergeron JL; Sofer E; Peng KA; Jamal N
    Laryngoscope; 2013 Dec; 123(12):3110-6. PubMed ID: 23712542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of temporal patterns of oral airflow in men and women using a two-mass model of the vocal folds under dynamic control.
    Lucero JC; Koenig LL
    J Acoust Soc Am; 2005 Mar; 117(3 Pt 1):1362-72. PubMed ID: 15807024
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Indirect assessment of the contribution of subglottal air pressure and vocal-fold tension to changes of fundamental frequency in English.
    Monsen RB; Engebretson AM; Vemula NR
    J Acoust Soc Am; 1978 Jul; 64(1):65-80. PubMed ID: 712003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complex vibratory patterns in an elephant larynx.
    Herbst CT; Svec JG; Lohscheller J; Frey R; Gumpenberger M; Stoeger AS; Fitch WT
    J Exp Biol; 2013 Nov; 216(Pt 21):4054-64. PubMed ID: 24133151
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subglottal pressure and fundamental frequency control in contact calls of juvenile Alligator mississippiensis.
    Riede T; Tokuda IT; Farmer CG
    J Exp Biol; 2011 Sep; 214(Pt 18):3082-95. PubMed ID: 21865521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The First Application of the Two-Dimensional Scanning Videokymography in Excised Canine Larynx Model.
    Wang SG; Park HJ; Cho JK; Jang JY; Lee WY; Lee BJ; Lee JC; Cha W
    J Voice; 2016 Jan; 30(1):1-4. PubMed ID: 26296852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemi-laryngeal Setup for Studying Vocal Fold Vibration in Three Dimensions.
    Herbst CT; Hampala V; Garcia M; Hofer R; Svec JG
    J Vis Exp; 2017 Nov; (129):. PubMed ID: 29286438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Behind the Complex Interplay of Phonation: Investigating Elasticity of Vocal Folds With Pipette Aspiration Technique During Ex Vivo Phonation Experiments.
    Scheible F; Lamprecht R; Schaan C; Veltrup R; Henningson JO; Semmler M; Sutor A
    J Voice; 2023 Mar; ():. PubMed ID: 37005126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Videostroboscopic and morphological aspects of voice disturbances in patients with larynx atrophy and coexisting hypopharynx cancer.
    Kosztyła-Hojna B; Andrzejewska A; Moskal D; Kasperuk J; Falkowski D; Rogowski M
    Folia Histochem Cytobiol; 2011; 49(4):659-63. PubMed ID: 22252761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a mechanical larynx with agarose as a soft tissue substitute for vocal fold applications.
    Choo JQ; Lau DP; Chui CK; Yang T; Chng CB; Teoh SH
    J Biomech Eng; 2010 Jun; 132(6):065001. PubMed ID: 20887039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discovery of a low frequency sound source in Mysticeti (baleen whales): anatomical establishment of a vocal fold homolog.
    Reidenberg JS; Laitman JT
    Anat Rec (Hoboken); 2007 Jun; 290(6):745-59. PubMed ID: 17516447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vocal fold vibration in simulated head voice phonation in excised canine larynges.
    Shiotani A; Fukuda H; Kawaida M; Kanzaki J
    Eur Arch Otorhinolaryngol; 1996; 253(6):356-63. PubMed ID: 8858261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.