These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 37892880)

  • 21. Chemical biology of DNA polymerases: from selectivity to new functions.
    Marx A; Summerer D; Sauter KB; Gloeckner C; Rudinger NZ
    Nucleic Acids Symp Ser (Oxf); 2007; (51):81-2. PubMed ID: 18029596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bst polymerase - a humble relative of Taq polymerase.
    Oscorbin I; Filipenko M
    Comput Struct Biotechnol J; 2023; 21():4519-4535. PubMed ID: 37767105
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Redesigning the Genetic Polymers of Life.
    Chaput JC
    Acc Chem Res; 2021 Feb; 54(4):1056-1065. PubMed ID: 33533593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structures of ternary complexes of archaeal B-family DNA polymerases.
    Kropp HM; Betz K; Wirth J; Diederichs K; Marx A
    PLoS One; 2017; 12(12):e0188005. PubMed ID: 29211756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Variants of sequence family B Thermococcus kodakaraensis DNA polymerase with increased mismatch extension selectivity.
    Huber C; Marx A
    PLoS One; 2017; 12(8):e0183623. PubMed ID: 28832623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Studies of HNA Substrate Specificity in Mutants of an Archaeal DNA Polymerase Obtained by Directed Evolution.
    Samson C; Legrand P; Tekpinar M; Rozenski J; Abramov M; Holliger P; Pinheiro VB; Herdewijn P; Delarue M
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33302546
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional Comparison of Laboratory-Evolved XNA Polymerases for Synthetic Biology.
    Medina E; Yik EJ; Herdewijn P; Chaput JC
    ACS Synth Biol; 2021 Jun; 10(6):1429-1437. PubMed ID: 34029459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro production and screening of DNA polymerase eta mutants for catalytic diversity.
    Glick E; Anderson JP; Loeb LA
    Biotechniques; 2002 Nov; 33(5):1136-42, 1144. PubMed ID: 12449395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. DNA polymerases as engines for biotechnology.
    Hamilton SC; Farchaus JW; Davis MC
    Biotechniques; 2001 Aug; 31(2):370-6, 378-80, 382-3. PubMed ID: 11515374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. TT(N)mGCCTC inhibits archaeal family B DNA polymerases.
    Sun S; Guo W; Yang JS; Qiu M; Zhu XJ; Dai ZM
    Sci Rep; 2018 Jan; 8(1):1990. PubMed ID: 29386523
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accurate and Efficient One-Pot Reverse Transcription and Amplification of 2'-Fluoro-Modified Nucleic Acids by Commercial DNA Polymerases.
    Thompson AS; Barrett SE; Weiden AG; Venkatesh A; Seto MKC; Gottlieb SZP; Leconte AM
    Biochemistry; 2020 Aug; 59(31):2833-2841. PubMed ID: 32659079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Structure of an Archaeal B-Family DNA Polymerase in Complex with a Chemically Modified Nucleotide.
    Kropp HM; Diederichs K; Marx A
    Angew Chem Int Ed Engl; 2019 Apr; 58(16):5457-5461. PubMed ID: 30761722
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Three residues of the interdomain linker determine the conformation and single-base deletion fidelity of Y-family translesion polymerases.
    Mukherjee P; Wilson RC; Lahiri I; Pata JD
    J Biol Chem; 2014 Mar; 289(10):6323-6331. PubMed ID: 24415763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A useful strategy to construct DNA polymerases with different properties by using genetic resources from environmental DNA.
    Matsukawa H; Yamagami T; Kawarabayasi Y; Miyashita Y; Takahashi M; Ishino Y
    Genes Genet Syst; 2009 Feb; 84(1):3-13. PubMed ID: 19420796
    [TBL] [Abstract][Full Text] [Related]  

  • 36. α,β-D-constrained nucleic acids are strong terminators of thermostable DNA polymerases in polymerase chain reaction.
    Martínez O; Ecochard V; Mahéo S; Gross G; Bodin P; Teissié J; Escudier JM; Paquereau L
    PLoS One; 2011; 6(10):e25510. PubMed ID: 21991314
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gene duplications in evolution of archaeal family B DNA polymerases.
    Edgell DR; Klenk HP; Doolittle WF
    J Bacteriol; 1997 Apr; 179(8):2632-40. PubMed ID: 9098062
    [TBL] [Abstract][Full Text] [Related]  

  • 38. PCR performance of a thermostable heterodimeric archaeal DNA polymerase.
    Killelea T; Ralec C; Bossé A; Henneke G
    Front Microbiol; 2014; 5():195. PubMed ID: 24847315
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutational specificity of animal cell DNA polymerases.
    Roberts JD; Kunkel TA
    Environ Mutagen; 1986; 8(5):769-89. PubMed ID: 3769876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermally controlled intein splicing of engineered DNA polymerases provides a robust and generalizable solution for accurate and sensitive molecular diagnostics.
    Wang Y; Shi Y; Hellinga HW; Beese LS
    Nucleic Acids Res; 2023 Jun; 51(11):5883-5894. PubMed ID: 37166959
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.