These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 37892945)

  • 1. The Effects of Negative Pressure Induced by Flow Separation Vortices on Vocal Fold Dynamics during Voice Production.
    Jiang W; Zheng X; Farbos de Luzan C; Oren L; Gutmark E; Xue Q
    Bioengineering (Basel); 2023 Oct; 10(10):. PubMed ID: 37892945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct simultaneous measurement of intraglottal geometry and velocity fields in excised larynges.
    Khosla S; Oren L; Ying J; Gutmark E
    Laryngoscope; 2014 Apr; 124 Suppl 2():S1-13. PubMed ID: 24510612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the Intraglottal Pressure Induced by Flow Separation Vortices Using Large Eddy Simulation.
    Farbos de Luzan C; Oren L; Gutmark E; Khosla SM
    J Voice; 2021 Nov; 35(6):822-831. PubMed ID: 32273211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A computational study of the effect of intraglottal vortex-induced negative pressure on vocal fold vibration.
    Farahani MH; Zhang Z
    J Acoust Soc Am; 2014 Nov; 136(5):EL369-75. PubMed ID: 25373995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid-Structure Interaction Analysis of Aerodynamic and Elasticity Forces During Vocal Fold Vibration.
    Sundström E; Oren L; Farbos de Luzan C; Gutmark E; Khosla S
    J Voice; 2022 Sep; ():. PubMed ID: 36180275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. What can vortices tell us about vocal fold vibration and voice production.
    Khosla S; Murugappan S; Gutmark E
    Curr Opin Otolaryngol Head Neck Surg; 2008 Jun; 16(3):183-7. PubMed ID: 18475068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the Driving Force During the Normal Vocal Fold Vibration Cycle.
    DeJonckere PH; Lebacq J; Titze IR
    J Voice; 2017 Nov; 31(6):649-661. PubMed ID: 28495329
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow fields and acoustics in a unilateral scarred vocal fold model.
    Murugappan S; Khosla S; Casper K; Oren L; Gutmark E
    Ann Otol Rhinol Laryngol; 2009 Jan; 118(1):44-50. PubMed ID: 19244963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Vivo Quantification of the Intraglottal Pressure: Modal Phonation and Voice Onset.
    DeJonckere PH; Lebacq J
    J Voice; 2020 Jul; 34(4):645.e19-645.e39. PubMed ID: 30658875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intraglottal geometry and velocity measurements in canine larynges.
    Oren L; Khosla S; Gutmark E
    J Acoust Soc Am; 2014 Jan; 135(1):380-8. PubMed ID: 24437778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational simulations of vocal fold vibration: Bernoulli versus Navier-Stokes.
    Decker GZ; Thomson SL
    J Voice; 2007 May; 21(3):273-84. PubMed ID: 16504473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of vortices in voice production: normal versus asymmetric tension.
    Khosla S; Murugappan S; Paniello R; Ying J; Gutmark E
    Laryngoscope; 2009 Jan; 119(1):216-21. PubMed ID: 19117305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct measurement of planar flow rate in an excised canine larynx model.
    Oren L; Khosla S; Dembinski D; Ying J; Gutmark E
    Laryngoscope; 2015 Feb; 125(2):383-8. PubMed ID: 25093928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A computational study of the effects of vocal fold stiffness parameters on voice production.
    Wang X; Jiang W; Zheng X; Xue Q
    J Voice; 2021 Mar; 35(2):327.e1-327.e11. PubMed ID: 31628047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An acoustic source model for asymmetric intraglottal flow with application to reduced-order models of the vocal folds.
    Erath BD; Peterson SD; Weiland KS; Plesniak MW; Zañartu M
    PLoS One; 2019; 14(7):e0219914. PubMed ID: 31344084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of subglottic stenosis on the flow-induced vibration of a computational vocal fold model.
    Smith SL; Thomson SL
    J Fluids Struct; 2013 Apr; 38():77-91. PubMed ID: 23503699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of vocal fold vertical stiffness variation on voice production.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2016 Oct; 140(4):2856. PubMed ID: 27794296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of laryngeal size to differences between male and female voice production.
    Zhang Z
    J Acoust Soc Am; 2021 Dec; 150(6):4511. PubMed ID: 34972311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vocal fold dynamics in a synthetic self-oscillating model: Intraglottal aerodynamic pressure and energy.
    Motie-Shirazi M; Zañartu M; Peterson SD; Erath BD
    J Acoust Soc Am; 2021 Aug; 150(2):1332. PubMed ID: 34470335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of False Vocal Folds on Intraglottal Velocity Fields.
    Oren L; Khosla S; Farbos de Luzan C; Gutmark E
    J Voice; 2021 Sep; 35(5):695-702. PubMed ID: 32147314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.