These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 37893292)

  • 1. PANI-Coated VO
    Zhang Q; Li X; Zheng Y; Tu Q; Wei S; Shi H; Tang W; Chen L
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance VO
    Chen C; Wei S; Zhang Q; Yang H; Xu J; Chen L; Liu X
    J Colloid Interface Sci; 2024 Jun; 664():53-62. PubMed ID: 38458055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of ZnCo
    Chen X; Cai J
    Dalton Trans; 2022 Nov; 51(43):16587-16595. PubMed ID: 36263749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Flexible High-Performance and Screen-Printed Symmetric Supercapacitor Using Hierarchical Rodlike V
    Lin B; Zheng Y; Wang J; Tu Q; Tang W; Chen L
    Nanomaterials (Basel); 2023 Aug; 13(16):. PubMed ID: 37630867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance.
    Cao XM; Han ZB
    Chem Commun (Camb); 2019 Feb; 55(12):1746-1749. PubMed ID: 30663750
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Growth of the Ni
    Liu X; Wang J; Yang G
    ACS Appl Mater Interfaces; 2018 Jun; 10(24):20688-20695. PubMed ID: 29807419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opening MXene Ion Transport Channels by Intercalating PANI Nanoparticles from the Self-Assembly Approach for High Volumetric and Areal Energy Density Supercapacitors.
    Wang X; Wang Y; Liu D; Li X; Xiao H; Ma Y; Xu M; Yuan G; Chen G
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30633-30642. PubMed ID: 34156249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X; Kong D; Huang Q; Cao L; Zhang P; Lin H; Lin Z; Yuan H
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible all-solid-state supercapacitors based on polyaniline orderly nanotubes array.
    Li H; Song J; Wang L; Feng X; Liu R; Zeng W; Huang Z; Ma Y; Wang L
    Nanoscale; 2017 Jan; 9(1):193-200. PubMed ID: 27906390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile and controllable in-situ nitridation of polyaniline electrode for high-performance flexible all-solid-state supercapacitors.
    Wang J; Ma Y; Liu J; Zhu L; Wu X; Huang X
    J Colloid Interface Sci; 2022 Aug; 620():399-406. PubMed ID: 35447573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible core/shelled PPy@PANI nanotube porous films for hybrid supercapacitors.
    Zhang G; Zhang J; Li W; Wang J; Li X
    Nanotechnology; 2021 Nov; 33(6):. PubMed ID: 34700312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamically Cross-Linked, Self-Healable, and Stretchable All-Hydrogel Supercapacitor with Extraordinary Energy Density and Real-Time Pressure Sensing.
    Xu M; Zhu J; Xie J; Mao Y; Hu W
    Small; 2024 Mar; 20(10):e2305448. PubMed ID: 37880904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique Core-Shell Nanorod Arrays with Polyaniline Deposited into Mesoporous NiCo2O4 Support for High-Performance Supercapacitor Electrodes.
    Jabeen N; Xia Q; Yang M; Xia H
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):6093-100. PubMed ID: 26889785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Capacitive Antimonene/CNT/PANI Free-Standing Electrodes for Flexible Supercapacitor Engaged with Self-Healing Function.
    Jiang Y; Ou J; Luo Z; Chen Y; Wu Z; Wu H; Fu X; Luo S; Huang Y
    Small; 2022 Jun; 18(25):e2201377. PubMed ID: 35603958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of 3D Urchin-Shaped Coaxial Manganese Dioxide@Polyaniline (MnO
    Ghosh K; Yue CY; Sk MM; Jena RK
    ACS Appl Mater Interfaces; 2017 May; 9(18):15350-15363. PubMed ID: 28414212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. α-Fe2O3@PANI Core-Shell Nanowire Arrays as Negative Electrodes for Asymmetric Supercapacitors.
    Lu XF; Chen XY; Zhou W; Tong YX; Li GR
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):14843-50. PubMed ID: 26090902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Facile Processing of Free-Standing Polyaniline/SWCNT Film as an Integrated Electrode for Flexible Supercapacitor Application.
    Liu F; Luo S; Liu D; Chen W; Huang Y; Dong L; Wang L
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33791-33801. PubMed ID: 28884579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron oxides nanobelt arrays rooted in nanoporous surface of carbon tube textile as stretchable and robust electrodes for flexible supercapacitors with ultrahigh areal energy density and remarkable cycling-stability.
    Ding Y; Tang S; Han R; Zhang S; Pan G; Meng X
    Sci Rep; 2020 Jul; 10(1):11023. PubMed ID: 32620806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymorphous Supercapacitors Constructed from Flexible Three-Dimensional Carbon Network/Polyaniline/MnO
    Wang J; Dong L; Xu C; Ren D; Ma X; Kang F
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10851-10859. PubMed ID: 29528208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Performance of All-Solid-State Flexible Supercapacitor Based on the Stress-Compensation Effect.
    Wang DY; Dong ZQ; Zhang S; Hu TY; Zhang XT; Li X; Li F
    J Nanosci Nanotechnol; 2021 Mar; 21(3):1687-1693. PubMed ID: 33404434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.