These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37893302)

  • 1. Choice of the Miniature Inertial Optomechanical Sensor Geometric Parameters with the Help of Their Mechanical Characteristics Modelling.
    Kumanchik L; Rezinkina M; Braxmaier C
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gyro-Free Inertial Navigation Systems Based on Linear Opto-Mechanical Accelerometers.
    Sanjuan J; Sinyukov A; Warrayat MF; Guzman F
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrinsically accurate sensing with an optomechanical accelerometer.
    Reschovsky BJ; Long DA; Zhou F; Bao Y; Allen RA; LeBrun TW; Gorman JJ
    Opt Express; 2022 May; 30(11):19510-19523. PubMed ID: 36221725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon-Based Zipper Photonic Crystal Cavity Optomechanical System for Accelerometers.
    Tan H; Pan D; Wang C; Yao Y
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Chip-Scale Oscillation-Mode Optomechanical Inertial Sensor Near the Thermodynamical Limits.
    Huang Y; Flores JGF; Li Y; Wang W; Wang D; Goldberg N; Zheng J; Yu M; Lu M; Kutzer M; Rogers D; Kwong DL; Churchill L; Wong CW
    Laser Photon Rev; 2020 May; 14(5):. PubMed ID: 34712367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers.
    Lu Q; Wang C; Bai J; Wang K; Lou S; Jiao X; Han D; Yang G; Liu D; Yang Y
    Opt Express; 2016 Apr; 24(8):9094-111. PubMed ID: 27137337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation and Error Analysis for Optomechanical Inertial Sensors.
    Kelly P; Majji M; Guzmán F
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single Chip-Based Nano-Optomechanical Accelerometer Based on Subwavelength Grating Pair and Rotated Serpentine Springs.
    Lu Q; Bai J; Wang K; Chen P; Fang W; Wang C
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29949871
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optomechanical inertial sensors.
    Hines A; Richardson L; Wisniewski H; Guzman F
    Appl Opt; 2020 Aug; 59(22):G167-G174. PubMed ID: 32749330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano-optomechanical Resonators for Sensitive Pressure Sensing.
    Chen Y; Liu S; Hong G; Zou M; Liu B; Luo J; Wang Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39211-39219. PubMed ID: 35994410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study on band-pass filtering for calculating foot displacements from accelerometer and gyroscope sensors.
    Charry E; Lai DT; Begg RK; Palaniswami M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4824, 4826-7. PubMed ID: 19963857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2 ng/√Hz-resolution optomechanical accelerometer employing a three-dimensional MEMS interferometer.
    Li C; Yang B; Zheng X; Guo X; Sun Z; Zhou L; Huang X
    Opt Lett; 2022 Apr; 47(7):1883-1886. PubMed ID: 35363760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal-spatial reach parameters derived from inertial sensors: Comparison to 3D marker-based motion capture.
    Cahill-Rowley K; Rose J
    J Biomech; 2017 Feb; 52():11-16. PubMed ID: 28010947
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for deriving displacement data during cyclical movement using an inertial sensor.
    Pfau T; Witte TH; Wilson AM
    J Exp Biol; 2005 Jul; 208(Pt 13):2503-14. PubMed ID: 15961737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Simulation Study of an Optical Mode-Localized MEMS Accelerometer.
    Feng Y; Yang W; Zou X
    Micromachines (Basel); 2022 Dec; 14(1):. PubMed ID: 36677100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optomechanical nonlinearity enhanced optical sensors.
    Fan J; Huang C; Zhu L
    Opt Express; 2015 Feb; 23(3):2973-81. PubMed ID: 25836157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Slot-Mode Optomechanical Crystals: A Versatile Platform for Multimode Optomechanics.
    Grutter KE; Davanço MI; Srinivasan K
    Optica; 2015; 2(11):994-1001. PubMed ID: 26807432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum hybrid optomechanical inertial sensing.
    Richardson L; Hines A; Schaffer A; Anderson BP; Guzman F
    Appl Opt; 2020 Aug; 59(22):G160-G166. PubMed ID: 32749329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-precision angular rate detection based on an optomechanical micro hemispherical shell resonator gyroscope.
    Huang W; Zhang S; Hassan JNA; Yan X; Chen D; Wen G; Chen K; Deng G; Huang Y
    Opt Express; 2023 Apr; 31(8):12433-12448. PubMed ID: 37157403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Terahertz cavity optomechanics using a topological nanophononic superlattice.
    Chang H; Li Z; Lou W; Yao Q; Lai JM; Liu B; Ni H; Niu Z; Chang K; Zhang J
    Nanoscale; 2022 Sep; 14(36):13046-13052. PubMed ID: 36056707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.