BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37895007)

  • 21. Surface plasmon resonance biosensor using hydrogel-AuNP supramolecular spheres for determination of prostate cancer-derived exosomes.
    Chen W; Li J; Wei X; Fan Y; Qian H; Li S; Xiang Y; Ding S
    Mikrochim Acta; 2020 Oct; 187(11):590. PubMed ID: 33025277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two Biosensors for the Determination of VEGF-R2 in Plasma by Array SPRi.
    Oldak L; Zelazowska-Rutkowska B; Lesniewska A; Mrozek P; Skoczylas M; Lukaszewski Z; Gorodkiewicz E
    Molecules; 2022 Dec; 28(1):. PubMed ID: 36615347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 1,25-Dihydroxyvitamin D(3) and extracellular inorganic phosphate activate mitogen-activated protein kinase pathway through fibroblast growth factor 23 contributing to hypertrophy and mineralization in osteoarthritic chondrocytes.
    Orfanidou T; Malizos KN; Varitimidis S; Tsezou A
    Exp Biol Med (Maywood); 2012 Mar; 237(3):241-53. PubMed ID: 22393163
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of FGF23 production and phosphate metabolism by bone-kidney interactions.
    Agoro R; White KE
    Nat Rev Nephrol; 2023 Mar; 19(3):185-193. PubMed ID: 36624273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Technical and diagnostic performance of a new fully automated immunoassay for the determination of intact fibroblast growth factor 23 (FGF23).
    van Helden J; Weiskirchen R
    Scand J Clin Lab Invest; 2018; 78(7-8):584-590. PubMed ID: 30380963
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sensitive and selective analysis of a wide concentration range of IGFBP7 using a surface plasmon resonance biosensor.
    Jang DH; Choi Y; Choi YS; Kim SM; Kwak H; Shin SH; Hong S
    Colloids Surf B Biointerfaces; 2014 Nov; 123():887-91. PubMed ID: 25466460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. New insights into the role of fibroblast growth factor 23 in chronic kidney disease.
    Nakai K; Komaba H; Fukagawa M
    J Nephrol; 2010; 23(6):619-25. PubMed ID: 20658451
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FGF23 promotes renal calcium reabsorption through the TRPV5 channel.
    Andrukhova O; Smorodchenko A; Egerbacher M; Streicher C; Zeitz U; Goetz R; Shalhoub V; Mohammadi M; Pohl EE; Lanske B; Erben RG
    EMBO J; 2014 Feb; 33(3):229-46. PubMed ID: 24434184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two SPRi biosensors for the determination of cathepsin S in blood plasma.
    Oldak L; Sankiewicz A; Żelazowska-Rutkowska B; Cylwik B; Lukaszewski Z; Skoczylas M; Gorodkiewicz E
    Talanta; 2021 Apr; 225():121900. PubMed ID: 33592693
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Impact of westernization on fibroblast growth factor 23 levels among individuals of African ancestry.
    Eckberg K; Kramer H; Wolf M; Durazo-Arvizu R; Tayo B; Luke A; Cooper R
    Nephrol Dial Transplant; 2015 Apr; 30(4):630-5. PubMed ID: 25358495
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fibroblast growth factor 23-Klotho and mineral metabolism in the first year after pediatric kidney transplantation: A single-center prospective study.
    Kubota M; Hamasaki Y; Hashimoto J; Aoki Y; Kawamura T; Saito A; Yuasa R; Muramatsu M; Komaba H; Toyoda M; Fukagawa M; Shishido S; Sakai K
    Pediatr Transplant; 2023 Mar; 27(2):e14440. PubMed ID: 36471536
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Array SPRi Biosensor for the Determination of Follicle-Stimulating Hormone in Blood Plasma.
    Sankiewicz A; Zelazowska-Rutkowska B; Lukaszewski Z; Hermanowicz A; Gorodkiewicz E
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139531
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Measurement and Interpretation of Fibroblast Growth Factor 23 (FGF23) Concentrations.
    Heijboer AC; Cavalier E
    Calcif Tissue Int; 2023 Feb; 112(2):258-270. PubMed ID: 35665817
    [TBL] [Abstract][Full Text] [Related]  

  • 34. miR-129 Blocks Secondary Hyperparathyroidism-Inducing Fgf23/αKlotho Signaling in Mice with Chronic Kidney Disease.
    Xu M; Li H; Bai Y; He J; Chen R; An N; Li Y; Dong Y
    Am J Med Sci; 2021 May; 361(5):624-634. PubMed ID: 33781552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fgf23 and parathyroid hormone signaling interact in kidney and bone.
    Andrukhova O; Streicher C; Zeitz U; Erben RG
    Mol Cell Endocrinol; 2016 Nov; 436():224-39. PubMed ID: 27498418
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Emerging role of fibroblast growth factor 23 in a bone-kidney axis regulating systemic phosphate homeostasis and extracellular matrix mineralization.
    Liu S; Gupta A; Quarles LD
    Curr Opin Nephrol Hypertens; 2007 Jul; 16(4):329-35. PubMed ID: 17565275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. αKlotho: FGF23 coreceptor and FGF23-regulating hormone.
    Jüppner H; Wolf M
    J Clin Invest; 2012 Dec; 122(12):4336-9. PubMed ID: 23187136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evidence for FGF23 involvement in a bone-kidney axis regulating bone mineralization and systemic phosphate and vitamin D homeostasis.
    Martin A; Quarles LD
    Adv Exp Med Biol; 2012; 728():65-83. PubMed ID: 22396162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphate-sensing and regulatory mechanism of FGF23 production.
    Takashi Y; Fukumoto S
    J Endocrinol Invest; 2020 Jul; 43(7):877-883. PubMed ID: 32140858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fibroblast growth factor 23 leads to endolysosomal routing of the renal phosphate cotransporters NaPi-IIa and NaPi-IIc in vivo.
    Küng CJ; Haykir B; Schnitzbauer U; Egli-Spichtig D; Hernando N; Wagner CA
    Am J Physiol Renal Physiol; 2021 Dec; 321(6):F785-F798. PubMed ID: 34719948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.