These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 37895041)

  • 1. Comparative Metabolomic and Transcriptomic Analyses Reveal Distinct Ascorbic Acid (AsA) Accumulation Patterns between PCA and PCNA Persimmon Developing Fruit.
    Wang Y; Diao S; Li H; Ye L; Suo Y; Zheng Y; Sun P; Han W; Fu J
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomic and metabolomic analyses reveal differences in flavonoid biosynthesis between PCNA and PCA persimmon fruit.
    Wang Y; Suo Y; Han W; Li H; Wang Z; Diao S; Sun P; Fu J
    Front Plant Sci; 2023; 14():1130047. PubMed ID: 36923131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome and Metabolome Reveal Distinct Sugar Accumulation Pattern between PCNA and PCA Mature Persimmon Fruit.
    Han W; Wang Y; Li H; Diao S; Suo Y; Li T; Sun P; Li F; Fu J
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptomic profiling analysis to identify genes associated with PA biosynthesis and insolubilization in the late stage of fruit development in C-PCNA persimmon.
    Wang Y; Zhang Q; Pu T; Suo Y; Han W; Diao S; Li H; Sun P; Fu J
    Sci Rep; 2022 Nov; 12(1):19140. PubMed ID: 36352175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a gene regulatory network underlying astringency loss in persimmon fruit.
    Nishiyama S; Onoue N; Kono A; Sato A; Yonemori K; Tao R
    Planta; 2018 Mar; 247(3):733-743. PubMed ID: 29188374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and functional characterization of DkMATE1 involved in proanthocyanidin precursor transport in persimmon (Diospyros kaki Thunb.) fruit.
    Yang S; Jiang Y; Xu L; Shiratake K; Luo Z; Zhang Q
    Plant Physiol Biochem; 2016 Nov; 108():241-250. PubMed ID: 27472890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit.
    Akagi T; Ikegami A; Suzuki Y; Yoshida J; Yamada M; Sato A; Yonemori K
    Planta; 2009 Oct; 230(5):899-915. PubMed ID: 19669159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of a laccase gene potentially involved in proanthocyanidin polymerization in Oriental persimmon (Diospyros kaki Thunb.) fruit.
    Hu Q; Luo C; Zhang Q; Luo Z
    Mol Biol Rep; 2013 Apr; 40(4):2809-20. PubMed ID: 23224657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An integrated analysis based on transcriptome and proteome reveals deastringency-related genes in CPCNA persimmon.
    Chen W; Xiong Y; Xu L; Zhang Q; Luo Z
    Sci Rep; 2017 Mar; 7():44671. PubMed ID: 28304376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative transcriptome analysis reveals regulatory network and regulators associated with proanthocyanidin accumulation in persimmon.
    Zheng Q; Chen W; Luo M; Xu L; Zhang Q; Luo Z
    BMC Plant Biol; 2021 Jul; 21(1):356. PubMed ID: 34325657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ethylene-responsive transcription factors interact with promoters of ADH and PDC involved in persimmon (Diospyros kaki) fruit de-astringency.
    Min T; Yin XR; Shi YN; Luo ZR; Yao YC; Grierson D; Ferguson IB; Chen KS
    J Exp Bot; 2012 Nov; 63(18):6393-405. PubMed ID: 23095993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of microRNAs from Chinese pollination constant non-astringent persimmon using high-throughput sequencing.
    Luo Y; Zhang X; Luo Z; Zhang Q; Liu J
    BMC Plant Biol; 2015 Jan; 15():11. PubMed ID: 25604351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential transport activity of DkDTX5/MATE5 affects the formation of different astringency in persimmon.
    Liu Y; Wu X; Sun C; Chen W; Zhang M; Liu N; Zhang Q; Xu L; Luo Z
    J Integr Plant Biol; 2023 Oct; 65(10):2304-2319. PubMed ID: 37526209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide transcriptome analysis of Chinese pollination-constant nonastringent persimmon fruit treated with ethanol.
    Luo C; Zhang Q; Luo Z
    BMC Genomics; 2014 Feb; 15():112. PubMed ID: 24507483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DkWRKY interacts with pyruvate kinase gene DkPK1 and promotes natural deastringency in C-PCNA persimmon.
    Guan C; Wang M; Zhang Y; Ruan X; Zhang Q; Luo Z; Yang Y
    Plant Sci; 2020 Jan; 290():110285. PubMed ID: 31779905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DkmiR397 Regulates Proanthocyanidin Biosynthesis via Negative Modulating
    Zaman F; Zhang M; Liu Y; Wang Z; Xu L; Guo D; Luo Z; Zhang Q
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection.
    Sato A; Yamada M
    Breed Sci; 2016 Jan; 66(1):60-8. PubMed ID: 27069391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the Correlation between Persimmon Fruit-Sugar Components and Taste Traits from Germplasm Evaluation.
    Dong Y; Liu C; Gong B; Yang X; Wu K; Yue Z; Xu Y
    Int J Mol Sci; 2024 Jul; 25(14):. PubMed ID: 39063045
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Guan C; Du X; Zhang Q; Ma F; Luo Z; Yang Y
    Front Plant Sci; 2017; 8():149. PubMed ID: 28243247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and Characterization of DkPK Genes Associated with Natural Deastringency in C-PCNA Persimmon.
    Guan C; Chen W; Mo R; Du X; Zhang Q; Luo Z
    Front Plant Sci; 2016; 7():156. PubMed ID: 26925075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.