BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 37895133)

  • 21. Full implementation of the genetic code by tryptophanyl-tRNA synthetase requires intermodular coupling.
    Li L; Carter CW
    J Biol Chem; 2013 Nov; 288(48):34736-45. PubMed ID: 24142809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regioselective nitration of tryptophan by a complex between bacterial nitric-oxide synthase and tryptophanyl-tRNA synthetase.
    Buddha MR; Tao T; Parry RJ; Crane BR
    J Biol Chem; 2004 Nov; 279(48):49567-70. PubMed ID: 15466862
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Three G.C base pairs required for the efficient aminoacylation of tRNATrp by tryptophanyl-tRNA synthetase from Bacillus subtilis.
    Xu F; Jiang G; Li W; He X; Jin Y; Wang D
    Biochemistry; 2002 Jun; 41(25):8087-92. PubMed ID: 12069601
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of lysine-195 in the KMSKS sequence of E. coli tryptophanyl-tRNA synthetase.
    Chan KW; Koeppe RE
    FEBS Lett; 1995 Apr; 363(1-2):33-6. PubMed ID: 7729548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei.
    Charrière F; Helgadóttir S; Horn EK; Söll D; Schneider A
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6847-52. PubMed ID: 16636268
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptamine-induced tryptophanyl-tRNAtrp deficiency in neurodifferentiation and neurodegeneration interplay: progenitor activation with neurite growth terminated in Alzheimer's disease neuronal vesicularization and fragmentation.
    Paley EL
    J Alzheimers Dis; 2011; 26(2):263-98. PubMed ID: 21628792
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis.
    Buddha MR; Crane BR
    J Biol Chem; 2005 Sep; 280(36):31965-73. PubMed ID: 15998643
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human tryptophanyl-tRNA synthetase binds with heme to enhance its aminoacylation activity.
    Wakasugi K
    Biochemistry; 2007 Oct; 46(40):11291-8. PubMed ID: 17877375
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human tryptophanyl-tRNA synthetase is switched to a tRNA-dependent mode for tryptophan activation by mutations at V85 and I311.
    Guo LT; Chen XL; Zhao BT; Shi Y; Li W; Xue H; Jin YX
    Nucleic Acids Res; 2007; 35(17):5934-43. PubMed ID: 17726052
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mammalian tryptophanyl-tRNA synthetases.
    Kisselev LL
    Biochimie; 1993; 75(12):1027-39. PubMed ID: 7515282
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Chemical modifications of Bacillus subtilis tryptophanyl-tRNA synthetase.
    Xue H; Xue Y; Doublié S; Carter CW
    Biochem Cell Biol; 1997; 75(6):709-15. PubMed ID: 9599659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tryptophanyl-tRNA synthetase from Bacillus subtilis. Characterization and role of hydrophobicity in substrate recognition.
    Xu ZJ; Love ML; Ma LY; Blum M; Bronskill PM; Bernstein J; Grey AA; Hofmann T; Camerman N; Wong JT
    J Biol Chem; 1989 Mar; 264(8):4304-11. PubMed ID: 2494170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two essential regions for tRNA recognition in Bacillus subtilis tryptophanyl-tRNA synthetase.
    Jia J; Xu F; Chen X; Chen L; Jin Y; Wang DT
    Biochem J; 2002 Aug; 365(Pt 3):749-56. PubMed ID: 11966471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Molecular recognition of tryptophan tRNA by tryptophanyl-tRNA synthetase from Aeropyrum pernix K1.
    Tsuchiya W; Hasegawa T
    J Biochem; 2009 May; 145(5):635-41. PubMed ID: 19179361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced amino acid selection in fully evolved tryptophanyl-tRNA synthetase, relative to its urzyme, requires domain motion sensed by the D1 switch, a remote dynamic packing motif.
    Weinreb V; Li L; Chandrasekaran SN; Koehl P; Delarue M; Carter CW
    J Biol Chem; 2014 Feb; 289(7):4367-76. PubMed ID: 24394410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a residue crucial for the angiostatic activity of human mini tryptophanyl-tRNA synthetase by focusing on its molecular evolution.
    Nakamoto T; Miyanokoshi M; Tanaka T; Wakasugi K
    Sci Rep; 2016 Apr; 6():24750. PubMed ID: 27094087
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ligand dependent intra and inter subunit communication in human tryptophanyl tRNA synthetase as deduced from the dynamics of structure networks.
    Hansia P; Ghosh A; Vishveshwara S
    Mol Biosyst; 2009 Dec; 5(12):1860-72. PubMed ID: 19763332
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states.
    Shen N; Zhou M; Yang B; Yu Y; Dong X; Ding J
    Nucleic Acids Res; 2008 Mar; 36(4):1288-99. PubMed ID: 18180246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Expression of the rodent-specific alternative splice variant of tryptophanyl-tRNA synthetase in murine tissues and cells.
    Miyanokoshi M; Tanaka T; Tamai M; Tagawa Y; Wakasugi K
    Sci Rep; 2013 Dec; 3():3477. PubMed ID: 24327169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Docking of tryptophanyl [corrected tryptophan] analogs to trytophanyl-tRNA synthetase: implications for non-canonical amino acid incorporations.
    Azim MK; Budisa N
    Biol Chem; 2008 Sep; 389(9):1173-82. PubMed ID: 18713004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.