These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 378952)
1. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. Ciriacy M; Breitenbach I J Bacteriol; 1979 Jul; 139(1):152-60. PubMed ID: 378952 [TBL] [Abstract][Full Text] [Related]
2. A new regulatory principle for in vivo biochemistry: pleiotropic low affinity regulation by the adenine nucleotides--illustrated for the glycolytic enzymes of Saccharomyces cerevisiae. Mensonides FI; Bakker BM; Cremazy F; Messiha HL; Mendes P; Boogerd FC; Westerhoff HV FEBS Lett; 2013 Sep; 587(17):2860-7. PubMed ID: 23856461 [TBL] [Abstract][Full Text] [Related]
3. Comparative studies on the glycolytic and hexose monophosphate pathways in Candida parapsilosis and Saccharomyces cerevisiae. Caubet R; Guerin B; Guerin M Arch Microbiol; 1988; 149(4):324-9. PubMed ID: 2833196 [TBL] [Abstract][Full Text] [Related]
4. Characterization of glucose transport mutants of Saccharomyces cerevisiae during a nutritional upshift reveals a correlation between metabolite levels and glycolytic flux. Bosch D; Johansson M; Ferndahl C; Franzén CJ; Larsson C; Gustafsson L FEMS Yeast Res; 2008 Feb; 8(1):10-25. PubMed ID: 18042231 [TBL] [Abstract][Full Text] [Related]
5. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Navon G; Shulman RG; Yamane T; Eccleshall TR; Lam KB; Baronofsky JJ; Marmur J Biochemistry; 1979 Oct; 18(21):4487-99. PubMed ID: 40590 [TBL] [Abstract][Full Text] [Related]
7. The glucose-6-phosphate-isomerase reaction is essential for normal glucose repression in Saccharomyces cerevisiae. Sierkstra LN; Silljé HH; Verbakel JM; Verrips CT Eur J Biochem; 1993 May; 214(1):121-7. PubMed ID: 8508783 [TBL] [Abstract][Full Text] [Related]
8. Changes in the contents of metabolites and enzyme activities in rice plants responding to Rhizoctonia solani Kuhn infection: activation of glycolysis and connection to phenylpropanoid pathway. Mutuku JM; Nose A Plant Cell Physiol; 2012 Jun; 53(6):1017-32. PubMed ID: 22492233 [TBL] [Abstract][Full Text] [Related]
9. Characterization of mutations that overcome the toxic effect of glucose on phosphoglucose isomerase less strains of Saccharomyces cerevisiae. Gamo FJ; Portillo F; Gancedo C FEMS Microbiol Lett; 1993 Feb; 106(3):233-7. PubMed ID: 8454188 [TBL] [Abstract][Full Text] [Related]
10. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Entian KD; Dröll L; Mecke D Arch Microbiol; 1983 Jun; 134(3):187-192. PubMed ID: 6311131 [TBL] [Abstract][Full Text] [Related]
11. Mutations in phosphofructokinases alter the control characteristics of glycolysis in vivo in Saccharomyces cerevisiae. Lloyd D; James CJ; Maitra PK Yeast; 1992 Apr; 8(4):291-301. PubMed ID: 1387501 [TBL] [Abstract][Full Text] [Related]
12. Effect of the cancer specific shorter form of human 6-phosphofructo-1-kinase on the metabolism of the yeast Saccharomyces cerevisiae. Andrejc D; Možir A; Legiša M BMC Biotechnol; 2017 May; 17(1):41. PubMed ID: 28482870 [TBL] [Abstract][Full Text] [Related]
13. Effect of benzoate on the metabolism of fructose 2,6-bisphosphate in yeast. François J; Van Schaftingen E; Hers HG Eur J Biochem; 1986 Jan; 154(1):141-5. PubMed ID: 3002788 [TBL] [Abstract][Full Text] [Related]
14. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation. Matsuoka Y; Shimizu K J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830 [TBL] [Abstract][Full Text] [Related]
15. Cloning of a second gene encoding 5-phosphofructo-2-kinase in yeast, and characterization of mutant strains without fructose-2,6-bisphosphate. Boles E; Göhlmann HW; Zimmermann FK Mol Microbiol; 1996 Apr; 20(1):65-76. PubMed ID: 8861205 [TBL] [Abstract][Full Text] [Related]
16. Aberrant Intracellular pH Regulation Limiting Glyceraldehyde-3-Phosphate Dehydrogenase Activity in the Glucose-Sensitive Yeast Van Leemputte F; Vanthienen W; Wijnants S; Van Zeebroeck G; Thevelein JM mBio; 2020 Oct; 11(5):. PubMed ID: 33109759 [TBL] [Abstract][Full Text] [Related]
17. Novel alleles of yeast hexokinase PII with distinct effects on catalytic activity and catabolite repression of SUC2. Hohmann S; Winderickx J; de Winde JH; Valckx D; Cobbaert P; Luyten K; de Meirsman C; Ramos J; Thevelein JM Microbiology (Reading); 1999 Mar; 145 ( Pt 3)():703-714. PubMed ID: 10217505 [TBL] [Abstract][Full Text] [Related]
18. Relationship of glycolytic intermediates, glycolytic enzymes, and ammonia to glycogen metabolism during sporulation in the yeast Saccharomyces cerevisiae. Fonzi WA; Shanley M; Opheim DJ J Bacteriol; 1979 Jan; 137(1):285-94. PubMed ID: 368017 [TBL] [Abstract][Full Text] [Related]
19. Induction of pyruvate decarboxylase in glycolysis mutants of Saccharomyces cerevisiae correlates with the concentrations of three-carbon glycolytic metabolites. Boles E; Zimmermann FK Arch Microbiol; 1993; 160(4):324-8. PubMed ID: 8239883 [TBL] [Abstract][Full Text] [Related]
20. Physiology of a temperature-sensitive mutant of Saccharomyces cerevisiae defective in phosphofructokinase activity. Banerjee S; Getz GS; Garg M J Bacteriol; 1984 Apr; 158(1):94-101. PubMed ID: 6232262 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]