These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37895498)

  • 1. Iterated Clique Reductions in Vertex Weighted Coloring for Large Sparse Graphs.
    Fan Y; Zhang Z; Yu Q; Lai Y; Su K; Wang Y; Pan S; Latecki LJ
    Entropy (Basel); 2023 Sep; 25(10):. PubMed ID: 37895498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Linear-Time Algorithm for 4-Coloring Some Classes of Planar Graphs.
    Liang Z; Wei H
    Comput Intell Neurosci; 2021; 2021():7667656. PubMed ID: 34650606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An exact algorithm to find a maximum weight clique in a weighted undirected graph.
    Rozman K; Ghysels A; Janežič D; Konc J
    Sci Rep; 2024 Apr; 14(1):9118. PubMed ID: 38643335
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An iterated tabu search approach for the clique partitioning problem.
    Palubeckis G; Ostreika A; Tomkevičius A
    ScientificWorldJournal; 2014; 2014():353101. PubMed ID: 24737968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The maximum clique enumeration problem: algorithms, applications, and implementations.
    Eblen JD; Phillips CA; Rogers GL; Langston MA
    BMC Bioinformatics; 2012 Jun; 13 Suppl 10(Suppl 10):S5. PubMed ID: 22759429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Approximating the maximum weight clique using replicator dynamics.
    Bomze IR; Pelillo M; Stix V
    IEEE Trans Neural Netw; 2000; 11(6):1228-41. PubMed ID: 18249849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An impatient evolutionary algorithm with probabilistic tabu search for unified solution of some NP-hard problems in graph and set theory via clique finding.
    Guturu P; Dantu R
    IEEE Trans Syst Man Cybern B Cybern; 2008 Jun; 38(3):645-66. PubMed ID: 18558530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy function-based approaches to graph coloring.
    Di Blas A; Jagota A; Hughey R
    IEEE Trans Neural Netw; 2002; 13(1):81-91. PubMed ID: 18244411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Hybrid Evolutionary Algorithm for the Clique Partitioning Problem.
    Lu Z; Zhou Y; Hao JK
    IEEE Trans Cybern; 2022 Sep; 52(9):9391-9403. PubMed ID: 33635807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approximating maximum clique with a Hopfield network.
    Jagota A
    IEEE Trans Neural Netw; 1995; 6(3):724-35. PubMed ID: 18263357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.
    Bhowmick S; Chen TY; Halappanavar M
    J Parallel Distrib Comput; 2015 Feb; 76():132-144. PubMed ID: 25767331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partition Independent Set and Reduction-Based Approach for Partition Coloring Problem.
    Zhu E; Jiang F; Liu C; Xu J
    IEEE Trans Cybern; 2022 Jun; 52(6):4960-4969. PubMed ID: 33108304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimization algorithm for maximum quasi-clique problem based on information feedback model.
    Liu S; Zhou J; Wang D; Zhang Z; Lei M
    PeerJ Comput Sci; 2024; 10():e2173. PubMed ID: 39145205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatically generated algorithms for the vertex coloring problem.
    Contreras Bolton C; Gatica G; Parada V
    PLoS One; 2013; 8(3):e58551. PubMed ID: 23516506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic thresholding search for the feedback vertex set problem.
    Sun W; Hao JK; Wu Z; Li W; Wu Q
    PeerJ Comput Sci; 2023; 9():e1245. PubMed ID: 37346631
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A note on computational approaches for the antibandwidth problem.
    Sinnl M
    Cent Eur J Oper Res; 2021; 29(3):1057-1077. PubMed ID: 34776784
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TIVC: An Efficient Local Search Algorithm for Minimum Vertex Cover in Large Graphs.
    Zhang Y; Wang S; Liu C; Zhu E
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase transitions in the coloring of random graphs.
    Zdeborová L; Krzakała F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031131. PubMed ID: 17930223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the centrality of vertices of molecular graphs.
    Randić M; Novič M; Vračko M; Plavšić D
    J Comput Chem; 2013 Nov; 34(29):2514-23. PubMed ID: 23955387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graph coloring using the reduced quantum genetic algorithm.
    Ardelean SM; Udrescu M
    PeerJ Comput Sci; 2022; 8():e836. PubMed ID: 35111921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.