These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37895697)

  • 1. Research on Johnson-Cook Constitutive Model of γ-TiAl Alloy with Improved Parameters.
    Shi L; Wang T; Wang L; Liu E
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895697
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Comparation of Arrhenius-Type and Modified Johnson-Cook Constitutive Models at Elevated Temperature for Annealed TA31 Titanium Alloy.
    Yang S; Liang P; Gao F; Song D; Jiang P; Zhao M; Kong N
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constitutive Model and Cutting Simulation of Titanium Alloy Ti6Al4V after Heat Treatment.
    Qian X; Duan X
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835657
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy.
    Gong X; Duan Z; Pei W; Chen H
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28925971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of high strain rate deformation on the mechanical behavior, fracture mechanisms and anisotropic response of 2060 Al-Cu-Li alloy.
    Abd El-Aty A; Xu Y; Zhang SH; Ha S; Ma Y; Chen D
    J Adv Res; 2019 Jul; 18():19-37. PubMed ID: 30809392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hot Tensile Deformation Behavior and Constitutive Models of GH3230 Superalloy Double-Sheet.
    Chen Y; Li H; Zhang S; Luo J; Teng J; Lv Y; Li M
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of Constitutive Models and Machine Learning Models to Predict the Elevated Temperature Flow Behavior of TiAl Alloy.
    Zhao R; He J; Tian H; Jing Y; Xiong J
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive model of 6063 aluminum alloy under the ultrasonic vibration upsetting based on Johnson-Cook model.
    Xie Z; Guan Y; Lin J; Zhai J; Zhu L
    Ultrasonics; 2019 Jul; 96():1-9. PubMed ID: 30939387
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress-Strain Curves and Modified Material Constitutive Model for Ti-6Al-4V over the Wide Ranges of Strain Rate and Temperature.
    Hou X; Liu Z; Wang B; Lv W; Liang X; Hua Y
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Softening and Hardening Behavior and the Micro-Mechanism of a TC31 High Temperature Titanium Alloy Sheet within Hot Deformation.
    Dang K; Wang K; Liu G
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamic Constitutive Relationship of Mg-Gd-Y-Zr-Ag Alloy during High Temperature Deformation Process.
    Peng S; Wu Y; Zhang T; Xie Q; Yuan Z; Yin L
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot Deformation Behavior and Pulse Current Auxiliary Isothermal Forging of Hot Pressing Sintering TiAl Based Alloys.
    Shi C; Jiang S; Zhang K
    Materials (Basel); 2017 Dec; 10(12):. PubMed ID: 29258198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermo⁻Mechanical Behavior and Constitutive Modeling of In Situ TiB
    Lin K; Wang W; Jiang R; Xiong Y; Shan C
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31013881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong, and Arrhenius-Type Constitutive Models to Predict Compression Flow Behavior of SnSbCu Alloy.
    Li T; Zhao B; Lu X; Xu H; Zou D
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31137885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic Mechanical Properties and Modified Material Constitutive Model for Hot Forged Ti
    Li L; Pan X; Zhang Y; Mu J; Zhao J; Dong X; Liu Z
    Materials (Basel); 2024 May; 17(11):. PubMed ID: 38893836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Prediction of the Flow Behavior of Metals and Alloys at a Wide Range of Temperatures and Strain Rates Using Johnson-Cook and Modified Johnson-Cook-Based Models: A Review.
    Shokry A; Gowid S; Mulki H; Kharmanda G
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Multi-Directional Forging on the Microstructure and Mechanical Properties of β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Wang J; Xu T; Kong F
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Strain-Rate-Dependent Tensile Response of Ti⁻5Al⁻2.5Sn Alloy.
    Zhang B; Wang J; Wang Y; Wang Y; Li Z
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30813249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separate Calibration of Johnson-Cook Model for Static and Dynamic Compression of a DNAN-Based Melt-Cast Explosive.
    Xie H; Zhang X; Miao F; Jiang T; Zhu Y; Wu X; Zhou L
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of Constitutive Models and Microstructure Evolution of GW103K Magnesium Alloy during Hot Deformation.
    Yin L; Wu Y
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.