BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37895732)

  • 1. Benchmarking Standard and Micromechanical Models for Creep and Shrinkage of Concrete Relevant for Nuclear Power Plants.
    Šmilauer V; Dohnalová L; Jirásek M; Sanahuja J; Seetharam S; Babaei S
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive Creep and Shrinkage of High-Strength Concrete Based on Limestone Coarse Aggregate Applied to High-Rise Buildings.
    Hwang E; Kim G; Koo K; Moon H; Choe G; Suh D; Nam J
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical Evaluation of CEB-FIP 2010 Model for Concrete Creep and Shrinkage.
    Pan Z; Zhang H; Zeng B; Wang Y
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837204
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental Evaluation of Shrinkage, Creep and Prestress Losses in Lightweight Aggregate Concrete with Sintered Fly Ash.
    Szydłowski RS; Łabuzek B
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modelling of Coupled Shrinkage and Creep in Multiphase Formulations for Hardening Concrete.
    Gamnitzer P; Brugger A; Drexel M; Hofstetter G
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31146386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Shrinkage and Creep for Concrete with Graphene Oxide Nanosheets.
    Chen Z; Xu Y; Hua J; Zhou X; Wang X; Huang L
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31561593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of Tensile Creep of a Normal Strength Overlay Concrete.
    Drexel M; Theiner Y; Hofstetter G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creep and Shrinkage Properties of Nano-SiO
    Zhou Y; Zhuang J; Lin W; Xu W; Hu R
    Materials (Basel); 2024 Apr; 17(8):. PubMed ID: 38673261
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Term Creep and Shrinkage Behavior of Concrete-Filled Steel Tube.
    Nguyen DB; Lin WS; Liao WC
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33430051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and numerical modeling of creep in different types of concrete.
    Harinadha Reddy D; Ramaswamy A
    Heliyon; 2018 Jul; 4(7):e00698. PubMed ID: 30094368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Type and Content of Fibers, Water-to-Cement Ratio, and Cementitious Materials on the Shrinkage and Creep of Ultra-High Performance Concrete.
    Chen Y; Liu P; Sha F; Yu Z; He S; Xu W; Lv M
    Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Concrete Creep in Compression, Tension, and Bending under Drying Condition.
    Kim SG; Park YS; Lee YH
    Materials (Basel); 2019 Oct; 12(20):. PubMed ID: 31618842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creep Deformation and Its Effect on Mechanical Properties and Microstructure of Magnesium Phosphate Cement Concrete.
    Gao Y; Qin J; Li Z; Jia X; Qian J
    Materials (Basel); 2023 Feb; 16(5):. PubMed ID: 36902875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creep Behavior of High-Strength Concrete Subjected to Elevated Temperatures.
    Yoon M; Kim G; Kim Y; Lee T; Choe G; Hwang E; Nam J
    Materials (Basel); 2017 Jul; 10(7):. PubMed ID: 28773144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early-Age Evolution of Strength, Stiffness, and Non-Aging Creep of Concretes: Experimental Characterization and Correlation Analysis.
    Ausweger M; Binder E; Lahayne O; Reihsner R; Maier G; Peyerl M; Pichler B
    Materials (Basel); 2019 Jan; 12(2):. PubMed ID: 30634498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of Short-Term Creep of Concrete Using Fractional Viscoelastic Model.
    Mei S; Li X; Wang X; Liu X
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calibration of a Multiphase Model Based on a Comprehensive Data Set for a Normal Strength Concrete.
    Gamnitzer P; Drexel M; Brugger A; Hofstetter G
    Materials (Basel); 2019 Mar; 12(5):. PubMed ID: 30866502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical Investigation of Interlaminar Stress of CRTS II Slab Ballastless Track Induced by Creep and Shrinkage of Concrete.
    Zheng Z; Liu P; Yu Z; Kuang Y; Liu L; He S; Zhang X; Li Q; Xu W; Lv M
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient effects of drying creep in nanoporous solids: understanding the effects of nanoscale energy barriers.
    Sinko R; Vandamme M; Bažant ZP; Keten S
    Proc Math Phys Eng Sci; 2016 Jul; 472(2191):20160490. PubMed ID: 27493584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concrete Shrinkage Analysis with Quicklime, Microfibers, and SRA Admixtures.
    Židanavičius D; Augonis M; Adamukaitis N; Fornes IV
    Materials (Basel); 2023 Mar; 16(5):. PubMed ID: 36903176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.