These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 37895775)

  • 1. Multi-Objective Optimization of Thin-Walled Composite Axisymmetric Structures Using Neural Surrogate Models and Genetic Algorithms.
    Miller B; Ziemiański L
    Materials (Basel); 2023 Oct; 16(20):. PubMed ID: 37895775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimal design of triangular side orifice using multi-objective optimization NSGA-II.
    Danish M; Ayaz M
    Water Sci Technol; 2023 Oct; 88(8):2136-2159. PubMed ID: 37906463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.
    Shirwaikar RD; Acharya U D; Makkithaya K; M S; Srivastava S; Lewis U LES
    Artif Intell Med; 2019 Jul; 98():59-76. PubMed ID: 31521253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surrogate-based multi-objective design optimization of a coronary stent: Altering geometry toward improved biomechanical performance.
    Ribeiro NS; Folgado J; Rodrigues HC
    Int J Numer Method Biomed Eng; 2021 Jun; 37(6):e3453. PubMed ID: 33751821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Tone Harmonic Balance Optimization for High-Power Amplifiers through Coarse and Fine Models Based on X-Parameters.
    Kouhalvandi L; Ceylan O; Ozoguz S; Matekovits L
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Multi-Objective Optimization of Neural Networks for Predicting the Physical Properties of Textile Polymer Composite Materials.
    Malashin I; Tynchenko V; Gantimurov A; Nelyub V; Borodulin A
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38932101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning for computational structural optimization.
    Nguyen LC; Nguyen-Xuan H
    ISA Trans; 2020 Aug; 103():177-191. PubMed ID: 32303352
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of light nonaqueous phase liquid groundwater contamination source based on empirical mode decomposition and deep learning.
    Li J; Wu Z; He H; Lu W
    Environ Sci Pollut Res Int; 2023 Mar; 30(13):38663-38682. PubMed ID: 36585581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of Dynamic and Buckling Behavior of Thin-Walled Composite Cylinder, Supported by Nature-Inspired Agorithms.
    Miller B; Ziemiański L
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260731
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chance-constrained multi-objective optimization of groundwater remediation design at DNAPLs-contaminated sites using a multi-algorithm genetically adaptive method.
    Ouyang Q; Lu W; Hou Z; Zhang Y; Li S; Luo J
    J Contam Hydrol; 2017 May; 200():15-23. PubMed ID: 28363342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse design of core-shell particles with discrete material classes using neural networks.
    Kuhn L; Repän T; Rockstuhl C
    Sci Rep; 2022 Nov; 12(1):19019. PubMed ID: 36347865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Remarkable Robustness of Surrogate Gradient Learning for Instilling Complex Function in Spiking Neural Networks.
    Zenke F; Vogels TP
    Neural Comput; 2021 Mar; 33(4):899-925. PubMed ID: 33513328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics estimation of natural fibre reinforced plastic composites using deep multi-layer perceptron (MLP) technique.
    Sathish T; Sunagar P; Singh V; Boopathi S; Sathyamurthy R; Al-Enizi AM; Pandit B; Gupta M; Sehgal SS
    Chemosphere; 2023 Oct; 337():139346. PubMed ID: 37379988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-objective optimization of coronary stent using Kriging surrogate model.
    Li H; Gu J; Wang M; Zhao D; Li Z; Qiao A; Zhu B
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):148. PubMed ID: 28155700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ageing, computation and the evolution of neural regeneration processes.
    Ollé-Vila A; Seoane LF; Solé R
    J R Soc Interface; 2020 Jul; 17(168):20200181. PubMed ID: 32674707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural optimization of single-layer domes using surrogate-based physics-informed neural networks.
    Wu H; Wu YC; Zhi P; Wu X; Zhu T
    Heliyon; 2023 Oct; 9(10):e20867. PubMed ID: 37886770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The deep arbitrary polynomial chaos neural network or how Deep Artificial Neural Networks could benefit from data-driven homogeneous chaos theory.
    Oladyshkin S; Praditia T; Kroeker I; Mohammadi F; Nowak W; Otte S
    Neural Netw; 2023 Sep; 166():85-104. PubMed ID: 37480771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Objective Genetic Algorithm Assisted by an Artificial Neural Network Metamodel for Shape Optimization of a Centrifugal Blood Pump.
    Ghadimi B; Nejat A; Nourbakhsh SA; Naderi N
    Artif Organs; 2019 May; 43(5):E76-E93. PubMed ID: 30282114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parametric Optimization of Thin-Walled 3D Beams with Perforation Based on Homogenization and Soft Computing.
    Gajewski T; Staszak N; Garbowski T
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Practical Approach to the Analysis and Optimization of Neural Networks on Embedded Systems.
    Merone M; Graziosi A; Lapadula V; Petrosino L; d'Angelis O; Vollero L
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.