These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 37896166)

  • 81. Effects of iron oxide nanoparticles as T
    Yang H; Wang H; Wen C; Bai S; Wei P; Xu B; Xu Y; Liang C; Zhang Y; Zhang G; Wen H; Zhang L
    J Nanobiotechnology; 2022 Mar; 20(1):98. PubMed ID: 35236363
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Superparamagnetic iron oxide nanoparticles exacerbate the risks of reactive oxygen species-mediated external stresses.
    Luo C; Li Y; Yang L; Wang X; Long J; Liu J
    Arch Toxicol; 2015 Mar; 89(3):357-69. PubMed ID: 24847785
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Radiosensitization Effect of Gold Nanoparticles in Proton Therapy.
    Cunningham C; de Kock M; Engelbrecht M; Miles X; Slabbert J; Vandevoorde C
    Front Public Health; 2021; 9():699822. PubMed ID: 34395371
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Bioactive iron oxide nanoparticles suppress osteoclastogenesis and ovariectomy-induced bone loss through regulating the TRAF6-p62-CYLD signaling complex.
    Liu L; Jin R; Duan J; Yang L; Cai Z; Zhu W; Nie Y; He J; Xia C; Gong Q; Song B; Anderson JM; Ai H
    Acta Biomater; 2020 Feb; 103():281-292. PubMed ID: 31866569
    [TBL] [Abstract][Full Text] [Related]  

  • 85. In Vitro/In Vivo Toxicity Evaluation and Quantification of Iron Oxide Nanoparticles.
    Patil US; Adireddy S; Jaiswal A; Mandava S; Lee BR; Chrisey DB
    Int J Mol Sci; 2015 Oct; 16(10):24417-50. PubMed ID: 26501258
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Proof of Concept of the Radiosensitizing Effect of Gadolinium Oxide Nanoparticles in Cell Spheroids and a Tumor-Implanted Murine Model of Chondrosarcoma.
    Aloy MT; Sidi Boumedine J; Deville A; Kryza D; Gauthier A; Brichart-Vernos D; Ollier G; La Padula V; Lux F; Tillement O; Rodriguez-Lafrasse C; Janier M
    Int J Nanomedicine; 2022; 17():6655-6673. PubMed ID: 36582458
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Ultrafast Fabrication of Iron/Manganese Co-Doped Bismuth Trimetallic Nanoparticles: A Thermally Aided Chemodynamic/Radio-Nanoplatform for Low-Dose Radioresistance.
    Xie W; Ye J; Guo Z; Lu J; Gao X; Wei Y; Zhao L
    ACS Appl Mater Interfaces; 2022 May; 14(19):21931-21944. PubMed ID: 35511491
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Radiosensitization and nanoparticles.
    Paunesku T; Gutiontov S; Brown K; Woloschak GE
    Cancer Treat Res; 2015; 166():151-71. PubMed ID: 25895868
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Shape-, size- and structure-controlled synthesis and biocompatibility of iron oxide nanoparticles for magnetic theranostics.
    Xie W; Guo Z; Gao F; Gao Q; Wang D; Liaw BS; Cai Q; Sun X; Wang X; Zhao L
    Theranostics; 2018; 8(12):3284-3307. PubMed ID: 29930730
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Accumulation of iron oxide nanoparticles by cultured primary neurons.
    Petters C; Dringen R
    Neurochem Int; 2015 Feb; 81():1-9. PubMed ID: 25510641
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Capilliposide C from
    Wu K; Chen X; Feng J; Zhang S; Xu Y; Zhang J; Wu Q; You M; Xia B; Ma S
    Front Oncol; 2021; 11():644117. PubMed ID: 33869036
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Potential Toxicity and Underlying Mechanisms Associated with Pulmonary Exposure to Iron Oxide Nanoparticles: Conflicting Literature and Unclear Risk.
    Kornberg TG; Stueckle TA; Antonini JA; Rojanasakul Y; Castranova V; Yang Y; Wang L
    Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 28984829
    [TBL] [Abstract][Full Text] [Related]  

  • 93. The role of cell cycle progression in radiosensitization by 2',2'-difluoro-2'-deoxycytidine.
    Ostruszka LJ; Shewach DS
    Cancer Res; 2000 Nov; 60(21):6080-8. PubMed ID: 11085531
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Design and development of a magnetic field-enabled platform for delivering polymer-coated iron oxide nanoparticles to breast cancer cells.
    Bulatao BP; Nalinratana N; Jantaratana P; Vajragupta O; Rojsitthisak P; Rojsitthisak P
    MethodsX; 2023 Dec; 11():102318. PubMed ID: 37608960
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Iron oxide nanoparticles served as the primary carrier to increase drug loading in macrophages.
    Zhao K; Ruan L; Liu X; Wu L; Cao J; Shen S
    Biomed Mater; 2022 Dec; 18(1):. PubMed ID: 36541487
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Synthesis and Characterization of Amorphous Iron Oxide Nanoparticles by the Sonochemical Method and Their Application for the Remediation of Heavy Metals from Wastewater.
    Yadav VK; Ali D; Khan SH; Gnanamoorthy G; Choudhary N; Yadav KK; Thai VN; Hussain SA; Manhrdas S
    Nanomaterials (Basel); 2020 Aug; 10(8):. PubMed ID: 32784715
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Quercetin attenuates neurotoxicity induced by iron oxide nanoparticles.
    Bardestani A; Ebrahimpour S; Esmaeili A; Esmaeili A
    J Nanobiotechnology; 2021 Oct; 19(1):327. PubMed ID: 34663344
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Iron oxide nanoparticles in the soil environment: Adsorption, transformation, and environmental risk.
    Tao Z; Zhou Q; Zheng T; Mo F; Ouyang S
    J Hazard Mater; 2023 Oct; 459():132107. PubMed ID: 37515989
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors.
    Li Z; Bai R; Yi J; Zhou H; Xian J; Chen C
    Chem Biomed Imaging; 2023 Jul; 1(4):315-339. PubMed ID: 37501794
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.