BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37896337)

  • 1. Tannic Acid-Induced Gelation of Aqueous Suspensions of Cellulose Nanocrystals.
    Lin F; Lin W; Chen J; Sun C; Zheng X; Xu Y; Lu B; Chen J; Huang B
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tannic acid-enriched nanocellulose hydrogels improve physical and oxidative stability of high-internal-phase Pickering emulsions.
    Ni Y; Li J; Fan L
    Int J Biol Macromol; 2024 Feb; 259(Pt 1):128796. PubMed ID: 38104679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of surface properties of cellulose nanocrystals through adsorption of tannic acid and alkyl cellulose derivatives.
    D'Acierno F; Capron I
    Carbohydr Polym; 2023 Nov; 319():121159. PubMed ID: 37567688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-Mediated Gelation of Aqueous Suspensions of Cellulose Nanocrystals.
    Chau M; Sriskandha SE; Pichugin D; Thérien-Aubin H; Nykypanchuk D; Chauve G; Méthot M; Bouchard J; Gang O; Kumacheva E
    Biomacromolecules; 2015 Aug; 16(8):2455-62. PubMed ID: 26102157
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of Tannic Acid on the Cholesteric Structure of Cellulose Nanocrystals.
    Jie H; Feng K; Lu M; Jin Z
    Langmuir; 2024 Jun; ():. PubMed ID: 38920318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Polyvinyl Alcohol-Tannic Acid Hydrogels with Diverse Microstructures and Good Mechanical Properties.
    Chen YN; Jiao C; Zhao Y; Zhang J; Wang H
    ACS Omega; 2018 Sep; 3(9):11788-11795. PubMed ID: 31459270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent Crosslinking of Colloidal Cellulose Nanocrystals for Multifunctional Nanostructured Hydrogels with Tunable Physicochemical Properties.
    Batta-Mpouma J; Kandhola G; Sakon J; Kim JW
    Biomacromolecules; 2022 Oct; 23(10):4085-4096. PubMed ID: 36166819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoresponsive and Injectable Composite Hydrogels of Cellulose Nanocrystals and Pluronic F127.
    Kushan E; Senses E
    ACS Appl Bio Mater; 2021 Apr; 4(4):3507-3517. PubMed ID: 35014435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mimicking Dynamic Adhesiveness and Strain-Stiffening Behavior of Biological Tissues in Tough and Self-Healable Cellulose Nanocomposite Hydrogels.
    Shao C; Meng L; Wang M; Cui C; Wang B; Han CR; Xu F; Yang J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5885-5895. PubMed ID: 30652853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel Cellulose Nanocrystals-Based Polyurethane: Synthesis, Characterization and Antibacterial Activity.
    Zhang M; Lu X; Zhang G; Liao X; Wang J; Zhang N; Yu C; Zeng G
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tannic acid-coated cellulose nanocrystals with enhanced mucoadhesive properties for aquaculture.
    Haji F; Kim DS; Tam KC
    Carbohydr Polym; 2023 Jul; 312():120835. PubMed ID: 37059561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties.
    Hao S; Shao C; Meng L; Cui C; Xu F; Yang J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bioinspired hydrogen bond crosslink strategy toward toughening ultrastrong and multifunctional nanocomposite hydrogels.
    Lin F; Wang Z; Chen J; Lu B; Tang L; Chen X; Lin C; Huang B; Zeng H; Chen Y
    J Mater Chem B; 2020 May; 8(18):4002-4015. PubMed ID: 32227057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid self-healing, stretchable, moldable, antioxidant and antibacterial tannic acid-cellulose nanofibril composite hydrogels.
    Ge W; Cao S; Shen F; Wang Y; Ren J; Wang X
    Carbohydr Polym; 2019 Nov; 224():115147. PubMed ID: 31472826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Injectable polysaccharide hydrogels reinforced with cellulose nanocrystals: morphology, rheology, degradation, and cytotoxicity.
    Yang X; Bakaic E; Hoare T; Cranston ED
    Biomacromolecules; 2013 Dec; 14(12):4447-55. PubMed ID: 24206059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.
    Lewis L; Derakhshandeh M; Hatzikiriakos SG; Hamad WY; MacLachlan MJ
    Biomacromolecules; 2016 Aug; 17(8):2747-54. PubMed ID: 27467200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tannic acid: a versatile polyphenol for design of biomedical hydrogels.
    Jafari H; Ghaffari-Bohlouli P; Niknezhad SV; Abedi A; Izadifar Z; Mohammadinejad R; Varma RS; Shavandi A
    J Mater Chem B; 2022 Aug; 10(31):5873-5912. PubMed ID: 35880440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications.
    Du H; Liu W; Zhang M; Si C; Zhang X; Li B
    Carbohydr Polym; 2019 Apr; 209():130-144. PubMed ID: 30732792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Tannic Acid Concentrations on Temperature-Sensitive Sol-Gel Transition and Stability of Tannic Acid/Pluronic F127 Composite Hydrogels.
    Lee JY; Shin HH; Cho C; Ryu JH
    Gels; 2024 Apr; 10(4):. PubMed ID: 38667675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An injectable self-healing hydrogel-cellulose nanocrystals conjugate with excellent mechanical strength and good biocompatibility.
    Du W; Deng A; Guo J; Chen J; Li H; Gao Y
    Carbohydr Polym; 2019 Nov; 223():115084. PubMed ID: 31426961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.