These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 37896718)
1. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation. Buunk T; Vélez S; Ariza-Sentís M; Valente J Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896718 [TBL] [Abstract][Full Text] [Related]
2. Dataset on unmanned aerial vehicle multispectral images acquired over a vineyard affected by Vélez S; Ariza-Sentís M; Valente J Data Brief; 2023 Feb; 46():108876. PubMed ID: 36660442 [TBL] [Abstract][Full Text] [Related]
3. A Comparative Analysis of UAV Photogrammetric Software Performance for Forest 3D Modeling: A Case Study Using AgiSoft Photoscan, PIX4DMapper, and DJI Terra. Jarahizadeh S; Salehi B Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203148 [TBL] [Abstract][Full Text] [Related]
4. EscaYard: Precision viticulture multimodal dataset of vineyards affected by Esca disease consisting of geotagged smartphone images, phytosanitary status, UAV 3D point clouds and Orthomosaics. Vélez S; Ariza-Sentís M; Valente J Data Brief; 2024 Jun; 54():110497. PubMed ID: 38774243 [TBL] [Abstract][Full Text] [Related]
5. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery. Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250 [TBL] [Abstract][Full Text] [Related]
6. VineLiDAR: High-resolution UAV-LiDAR vineyard dataset acquired over two years in northern Spain. Vélez S; Ariza-Sentís M; Valente J Data Brief; 2023 Dec; 51():109686. PubMed ID: 37915834 [TBL] [Abstract][Full Text] [Related]
7. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography. Che Y; Wang Q; Xie Z; Zhou L; Li S; Hui F; Wang X; Li B; Ma Y Ann Bot; 2020 Sep; 126(4):765-773. PubMed ID: 32432702 [TBL] [Abstract][Full Text] [Related]
8. Using Aerial Thermal Imagery to Evaluate Water Status in Araújo-Paredes C; Portela F; Mendes S; Valín MI Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298406 [TBL] [Abstract][Full Text] [Related]
9. Incorporation of Unmanned Aerial Vehicle (UAV) Point Cloud Products into Remote Sensing Evapotranspiration Models. Aboutalebi M; Torres-Rua AF; McKee M; Kustas WP; Nieto H; Alsina MM; White A; Prueger JH; McKee L; Alfieri J; Hipps L; Coopmans C; Dokoozlian N Remote Sens (Basel); 2020; 12(1):50. PubMed ID: 32355570 [TBL] [Abstract][Full Text] [Related]
10. Optimization and Evaluation of Sensor Angles for Precise Assessment of Architectural Traits in Peach Trees. Raman MG; Carlos EF; Sankaran S Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746401 [TBL] [Abstract][Full Text] [Related]
11. Validation of digital surface models (DSMs) retrieved from unmanned aerial vehicle (UAV) point clouds using geometrical information from shadows. Aboutalebi M; Torres-Rua AF; McKee M; Kustas W; Nieto H; Coopmans C Proc SPIE Int Soc Opt Eng; 2019; 11008():. PubMed ID: 31359902 [TBL] [Abstract][Full Text] [Related]
12. Grape Cluster Detection Using UAV Photogrammetric Point Clouds as a Low-Cost Tool for Yield Forecasting in Vineyards. Torres-Sánchez J; Mesas-Carrascosa FJ; Santesteban LG; Jiménez-Brenes FM; Oneka O; Villa-Llop A; Loidi M; López-Granados F Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33925169 [TBL] [Abstract][Full Text] [Related]
14. UAV and Machine Learning Based Refinement of a Satellite-Driven Vegetation Index for Precision Agriculture. Mazzia V; Comba L; Khaliq A; Chiaberge M; Gay P Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32365636 [TBL] [Abstract][Full Text] [Related]
15. Automatic Coregistration Algorithm to Remove Canopy Shaded Pixels in UAV-Borne Thermal Images to Improve the Estimation of Crop Water Stress Index of a Drip-Irrigated Cabernet Sauvignon Vineyard. Poblete T; Ortega-Farías S; Ryu D Sensors (Basel); 2018 Jan; 18(2):. PubMed ID: 29385722 [TBL] [Abstract][Full Text] [Related]
16. Comparative Analysis of TLS and UAV Sensors for Estimation of Grapevine Geometric Parameters. Ferreira L; Sousa JJ; Lourenço JM; Peres E; Morais R; Pádua L Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39204879 [TBL] [Abstract][Full Text] [Related]
17. Dataset of 3D computer models of Late Miocene Mount Messenger Formation outcrops in New Zealand, built with UAV drones. Kamaruzaman EH; La Croix AD; Kamp PJJ Data Brief; 2024 Feb; 52():110035. PubMed ID: 38293575 [TBL] [Abstract][Full Text] [Related]
18. Extraction of 3D distribution of potato plant CWSI based on thermal infrared image and binocular stereovision system. Wang L; Miao Y; Han Y; Li H; Zhang M; Peng C Front Plant Sci; 2022; 13():1104390. PubMed ID: 36762177 [TBL] [Abstract][Full Text] [Related]
19. An Improved Crop Scouting Technique Incorporating Unmanned Aerial Vehicle-Assisted Multispectral Crop Imaging into Conventional Scouting Practice for Gummy Stem Blight in Watermelon. Kalischuk M; Paret ML; Freeman JH; Raj D; Da Silva S; Eubanks S; Wiggins DJ; Lollar M; Marois JJ; Mellinger HC; Das J Plant Dis; 2019 Jul; 103(7):1642-1650. PubMed ID: 31082305 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of novel precision viticulture tool for canopy biomass estimation and missing plant detection based on 2.5D and 3D approaches using RGB images acquired by UAV platform. Di Gennaro SF; Matese A Plant Methods; 2020; 16():91. PubMed ID: 32636922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]