BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 3789722)

  • 1. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of growth conditions on the Streptococcus bovis phosphoenolpyruvate glucose phosphotransferase system.
    Moore GA; Martin SA
    J Anim Sci; 1991 Dec; 69(12):4967-73. PubMed ID: 1808190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexose phosphorylation by the ruminal bacterium Selenomonas ruminantium.
    Martin SA
    J Dairy Sci; 1996 Apr; 79(4):550-6. PubMed ID: 8744219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative strategies of 2-deoxyglucose resistance and low affinity glucose transport in the ruminal bacteria, Streptococcus bovis and Selenomonas ruminantium.
    Cook GM; Russell JB
    FEMS Microbiol Lett; 1994 Oct; 123(1-2):207-12. PubMed ID: 7988891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH on the efficiency of growth by pure cultures of rumen bacteria in continuous culture.
    Russell JB; Dombrowski DB
    Appl Environ Microbiol; 1980 Mar; 39(3):604-10. PubMed ID: 7387158
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sugar phosphorylation activity in ruminal acetogens.
    Jiang W; Pinder RS; Patterson JA; Ricke SC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(6):843-6. PubMed ID: 22423990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution of proteins similar to IIIManH and IIIManL of the Streptococcus salivarius phosphoenolpyruvate:mannose-glucose phosphotransferase system among oral and nonoral bacteria.
    Pelletier M; Frenette M; Vadeboncoeur C
    J Bacteriol; 1995 May; 177(9):2270-5. PubMed ID: 7730253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular pH of acid-tolerant ruminal bacteria.
    Russell JB
    Appl Environ Microbiol; 1991 Nov; 57(11):3383-4. PubMed ID: 1781695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclic AMP in ruminal and other anaerobic bacteria.
    Cotta MA; Wheeler MB; Whitehead TR
    FEMS Microbiol Lett; 1994 Dec; 124(3):355-9. PubMed ID: 7851742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of thymol on ruminal microorganisms.
    Evans JD; Martin SA
    Curr Microbiol; 2000 Nov; 41(5):336-40. PubMed ID: 11014870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ability of "low G + C gram-positive" ruminal bacteria to resist monensin and counteract potassium depletion.
    Callaway TR; Adams KA; Russell JB
    Curr Microbiol; 1999 Oct; 39(4):226-30. PubMed ID: 10486059
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoenolpyruvate-dependent sugar phosphotransferase activity in Megasphaera elsdenii.
    Dills SS; Lee CA; Saier MH
    Can J Microbiol; 1981 Sep; 27(9):949-52. PubMed ID: 7306882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nutrient transport by ruminal bacteria: a review.
    Martin SA
    J Anim Sci; 1994 Nov; 72(11):3019-31. PubMed ID: 7730197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and phosphorylation of disaccharides by the ruminal bacterium Streptococcus bovis.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1987 Oct; 53(10):2388-93. PubMed ID: 2827569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose: independence of inducer exclusion and expulsion mechanisms.
    Cook GM; Kearns DB; Russell JB; Reizer J; Saier MH
    Microbiology (Reading); 1995 Sep; 141 ( Pt 9)():2261-9. PubMed ID: 7496538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipopolysaccharide Stimulates the Growth of Bacteria That Contribute to Ruminal Acidosis.
    Dai X; Hackmann TJ; Lobo RR; Faciola AP
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811042
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermentation of xylans by Butyrivibrio fibrisolvens and other ruminal bacteria.
    Hespell RB; Wolf R; Bothast RJ
    Appl Environ Microbiol; 1987 Dec; 53(12):2849-53. PubMed ID: 3124741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ambient pH regulates lactate catabolism pathway of the ruminal Megasphaera elsdenii BE2-2083 and Selenomonas ruminantium HD4.
    Fan Y; Xia G; Jin Y; Wang H
    J Appl Microbiol; 2022 Apr; 132(4):2661-2672. PubMed ID: 35104035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of enzymes involved in glucose phosphorylation in oral streptococci.
    Vadeboncoeur C; Mayrand D; Trahan L
    J Dent Res; 1982 Jan; 61(1):60-5. PubMed ID: 6948019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.