These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37897357)

  • 1. HHCDB: a database of human heterochromatin regions.
    Wang H; Su M; Xing J; Zhou J; Wang J; Chen L; Dong H; Xue W; Liu Y; Wu Q; Zhang Y
    Nucleic Acids Res; 2024 Jan; 52(D1):D145-D153. PubMed ID: 37897357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of H3K9me3 heterochromatin in cell identity establishment and maintenance.
    Nicetto D; Zaret KS
    Curr Opin Genet Dev; 2019 Apr; 55():1-10. PubMed ID: 31103921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unique roles for histone H3K9me states in RNAi and heritable silencing of transcription.
    Jih G; Iglesias N; Currie MA; Bhanu NV; Paulo JA; Gygi SP; Garcia BA; Moazed D
    Nature; 2017 Jul; 547(7664):463-467. PubMed ID: 28682306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromatin state analysis of the barley epigenome reveals a higher-order structure defined by H3K27me1 and H3K27me3 abundance.
    Baker K; Dhillon T; Colas I; Cook N; Milne I; Milne L; Bayer M; Flavell AJ
    Plant J; 2015 Oct; 84(1):111-24. PubMed ID: 26255869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes.
    Becker JS; Nicetto D; Zaret KS
    Trends Genet; 2016 Jan; 32(1):29-41. PubMed ID: 26675384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of H3K9me3-dependent heterochromatin during embryogenesis in
    Wei KH; Chan C; Bachtrog D
    Elife; 2021 Jun; 10():. PubMed ID: 34128466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying distinct heterochromatin regions using combinatorial epigenetic probes in live cells.
    Mendonca A; Sánchez OF; Xie J; Carneiro A; Lin L; Yuan C
    Biochim Biophys Acta Gene Regul Mech; 2021 Aug; 1864(8):194725. PubMed ID: 34174495
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromosome boundary elements and regulation of heterochromatin spreading.
    Wang J; Lawry ST; Cohen AL; Jia S
    Cell Mol Life Sci; 2014 Dec; 71(24):4841-52. PubMed ID: 25192661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contribution of promoter DNA sequence to heterochromatin formation velocity and memory of gene repression in mouse embryo fibroblasts.
    Vignaux PA; Bregio C; Hathaway NA
    PLoS One; 2019; 14(7):e0217699. PubMed ID: 31269077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome organization and epigenetic marks in mouse germinal vesicle oocytes.
    Bonnet-Garnier A; Feuerstein P; Chebrout M; Fleurot R; Jan HU; Debey P; Beaujean N
    Int J Dev Biol; 2012; 56(10-12):877-87. PubMed ID: 23417410
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters.
    Cliffe AR; Garber DA; Knipe DM
    J Virol; 2009 Aug; 83(16):8182-90. PubMed ID: 19515781
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development.
    Wang C; Liu X; Gao Y; Yang L; Li C; Liu W; Chen C; Kou X; Zhao Y; Chen J; Wang Y; Le R; Wang H; Duan T; Zhang Y; Gao S
    Nat Cell Biol; 2018 May; 20(5):620-631. PubMed ID: 29686265
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H3K9me2 genome-wide distribution in the holocentric insect Spodoptera frugiperda (Lepidoptera: Noctuidae).
    Nhim S; Gimenez S; Nait-Saidi R; Severac D; Nam K; d'Alençon E; Nègre N
    Genomics; 2022 Jan; 114(1):384-397. PubMed ID: 34971718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enrichment of HP1a on Drosophila chromosome 4 genes creates an alternate chromatin structure critical for regulation in this heterochromatic domain.
    Riddle NC; Jung YL; Gu T; Alekseyenko AA; Asker D; Gui H; Kharchenko PV; Minoda A; Plachetka A; Schwartz YB; Tolstorukov MY; Kuroda MI; Pirrotta V; Karpen GH; Park PJ; Elgin SC
    PLoS Genet; 2012 Sep; 8(9):e1002954. PubMed ID: 23028361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Euchromatin islands in large heterochromatin domains are enriched for CTCF binding and differentially DNA-methylated regions.
    Wen B; Wu H; Loh YH; Briem E; Daley GQ; Feinberg AP
    BMC Genomics; 2012 Oct; 13():566. PubMed ID: 23102236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linking replication stress with heterochromatin formation.
    Nikolov I; Taddei A
    Chromosoma; 2016 Jun; 125(3):523-33. PubMed ID: 26511280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterochromatin and Polycomb as regulators of haematopoiesis.
    Keenan CR
    Biochem Soc Trans; 2021 Apr; 49(2):805-814. PubMed ID: 33929498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular landscape of modified histones in Drosophila heterochromatic genes and euchromatin-heterochromatin transition zones.
    Yasuhara JC; Wakimoto BT
    PLoS Genet; 2008 Jan; 4(1):e16. PubMed ID: 18208336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SMYD5 regulates H4K20me3-marked heterochromatin to safeguard ES cell self-renewal and prevent spurious differentiation.
    Kidder BL; Hu G; Cui K; Zhao K
    Epigenetics Chromatin; 2017; 10():8. PubMed ID: 28250819
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic plasticity safeguards heterochromatin configuration in mammals.
    Fukuda K; Shimi T; Shimura C; Ono T; Suzuki T; Onoue K; Okayama S; Miura H; Hiratani I; Ikeda K; Okada Y; Dohmae N; Yonemura S; Inoue A; Kimura H; Shinkai Y
    Nucleic Acids Res; 2023 Jul; 51(12):6190-6207. PubMed ID: 37178005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.