These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 37897752)

  • 1. Hydrodynamics-Induced Long-Range Attraction between Plates in Bacterial Suspensions.
    Ning L; Lou X; Ma Q; Yang Y; Luo N; Chen K; Meng F; Zhou X; Yang M; Peng Y
    Phys Rev Lett; 2023 Oct; 131(15):158301. PubMed ID: 37897752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An effective and efficient model of the near-field hydrodynamic interactions for active suspensions of bacteria.
    Zhang B; Leishangthem P; Ding Y; Xu X
    Proc Natl Acad Sci U S A; 2021 Jul; 118(28):. PubMed ID: 34260387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of hydrodynamics on effective interactions in suspensions of active and passive matter.
    Krafnick RC; García AE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022308. PubMed ID: 25768506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscosity of bacterial suspensions: hydrodynamic interactions and self-induced noise.
    Ryan SD; Haines BM; Berlyand L; Ziebert F; Aranson IS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):050904. PubMed ID: 21728480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrodynamic Interactions, Hidden Order, and Emergent Collective Behavior in an Active Bacterial Suspension.
    Pierce CJ; Wijesinghe H; Mumper E; Lower BH; Lower SK; Sooryakumar R
    Phys Rev Lett; 2018 Nov; 121(18):188001. PubMed ID: 30444412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-induced clustering in model dumbbell swimmers: the role of hydrodynamic interactions.
    Furukawa A; Marenduzzo D; Cates ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022303. PubMed ID: 25215734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How colloid-colloid interactions and hydrodynamic effects influence the percolation threshold: A simulation study in alumina suspensions.
    Laganapan AM; Mouas M; Videcoq A; Cerbelaud M; Bienia M; Bowen P; Ferrando R
    J Colloid Interface Sci; 2015 Nov; 458():241-6. PubMed ID: 26232284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering.
    Drescher K; Dunkel J; Cisneros LH; Ganguly S; Goldstein RE
    Proc Natl Acad Sci U S A; 2011 Jul; 108(27):10940-5. PubMed ID: 21690349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic suppression of phase separation in active suspensions.
    Matas-Navarro R; Golestanian R; Liverpool TB; Fielding SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032304. PubMed ID: 25314443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation in colloidal suspensions: effect of colloidal forces and hydrodynamic interactions.
    Kovalchuk NM; Starov VM
    Adv Colloid Interface Sci; 2012 Nov; 179-182():99-106. PubMed ID: 21645876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Density fluctuations and energy spectra of 3D bacterial suspensions.
    Liu Z; Zeng W; Ma X; Cheng X
    Soft Matter; 2021 Dec; 17(48):10806-10817. PubMed ID: 34787630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamics with spin in bacterial suspensions.
    Belovs M; Cēbers A
    Phys Rev E; 2016 Jun; 93(6):062404. PubMed ID: 27415295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoscale simulations of hydrodynamic squirmer interactions.
    Götze IO; Gompper G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041921. PubMed ID: 21230327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Electric Field on the Hydrodynamic Assembly of Polydisperse and Entangled Fibrillar Suspensions.
    Brouzet C; Mittal N; Rosén T; Takeda Y; Söderberg LD; Lundell F; Takana H
    Langmuir; 2021 Jul; 37(27):8339-8347. PubMed ID: 34176263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collective Motion of Microorganisms in a Viscoelastic Fluid.
    Li G; Ardekani AM
    Phys Rev Lett; 2016 Sep; 117(11):118001. PubMed ID: 27661719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatiotemporal Dynamics of Dilute Red Blood Cell Suspensions in Low-Inertia Microchannel Flow.
    Zhou Q; Fidalgo J; Calvi L; Bernabeu MO; Hoskins PR; Oliveira MSN; Krüger T
    Biophys J; 2020 May; 118(10):2561-2573. PubMed ID: 32325022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic attractor phase diagrams of active nematic suspensions: the dilute regime.
    Forest MG; Wang Q; Zhou R
    Soft Matter; 2015 Aug; 11(32):6393-402. PubMed ID: 26169540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clustering of microswimmers: interplay of shape and hydrodynamics.
    Theers M; Westphal E; Qi K; Winkler RG; Gompper G
    Soft Matter; 2018 Oct; 14(42):8590-8603. PubMed ID: 30339172
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effective interactions between colloidal particles suspended in a bath of swimming cells.
    Angelani L; Maggi C; Bernardini ML; Rizzo A; Di Leonardo R
    Phys Rev Lett; 2011 Sep; 107(13):138302. PubMed ID: 22026908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.