These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37897768)

  • 1. Interferometry-Integrated Noise-Immune Quantum Memory.
    Yu Z; Wu Z; Li X; Feng X; Huang W; Zhang K; Yuan CH; Zhang W; Chen LQ
    Phys Rev Lett; 2023 Oct; 131(15):150804. PubMed ID: 37897768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast, noise-free memory for photon synchronization at room temperature.
    Finkelstein R; Poem E; Michel O; Lahad O; Firstenberg O
    Sci Adv; 2018 Jan; 4(1):eaap8598. PubMed ID: 29349302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-noise GaAs quantum dots for quantum photonics.
    Zhai L; Löbl MC; Nguyen GN; Ritzmann J; Javadi A; Spinnler C; Wieck AD; Ludwig A; Warburton RJ
    Nat Commun; 2020 Sep; 11(1):4745. PubMed ID: 32958795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical Memory in a Microfabricated Rubidium Vapor Cell.
    Mottola R; Buser G; Treutlein P
    Phys Rev Lett; 2023 Dec; 131(26):260801. PubMed ID: 38215374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple Atomic Quantum Memory Suitable for Semiconductor Quantum Dot Single Photons.
    Wolters J; Buser G; Horsley A; Béguin L; Jöckel A; Jahn JP; Warburton RJ; Treutlein P
    Phys Rev Lett; 2017 Aug; 119(6):060502. PubMed ID: 28949634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deterministic storage and retrieval of telecom light from a quantum dot single-photon source interfaced with an atomic quantum memory.
    Thomas SE; Wagner L; Joos R; Sittig R; Nawrath C; Burdekin P; de Buy Wenniger IM; Rasiah MJ; Huber-Loyola T; Sagona-Stophel S; Höfling S; Jetter M; Michler P; Walmsley IA; Portalupi SL; Ledingham PM
    Sci Adv; 2024 Apr; 10(15):eadi7346. PubMed ID: 38608017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subhertz interferometry at the quantum noise limit.
    Yang P; Xie B; Feng S
    Opt Lett; 2019 May; 44(9):2366-2369. PubMed ID: 31042224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-performance Raman quantum memory with optimal control in room temperature atoms.
    Guo J; Feng X; Yang P; Yu Z; Chen LQ; Yuan CH; Zhang W
    Nat Commun; 2019 Jan; 10(1):148. PubMed ID: 30635582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-performance cavity-enhanced quantum memory with warm atomic cell.
    Ma L; Lei X; Yan J; Li R; Chai T; Yan Z; Jia X; Xie C; Peng K
    Nat Commun; 2022 May; 13(1):2368. PubMed ID: 35501315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Truncated Nonlinear Interferometry for Quantum-Enhanced Atomic Force Microscopy.
    Pooser RC; Savino N; Batson E; Beckey JL; Garcia J; Lawrie BJ
    Phys Rev Lett; 2020 Jun; 124(23):230504. PubMed ID: 32603167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hybrid quantum memory-enabled network at room temperature.
    Pang XL; Yang AL; Dou JP; Li H; Zhang CN; Poem E; Saunders DJ; Tang H; Nunn J; Walmsley IA; Jin XM
    Sci Adv; 2020 Feb; 6(6):eaax1425. PubMed ID: 32083174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of memory-enhanced quantum communication.
    Bhaskar MK; Riedinger R; Machielse B; Levonian DS; Nguyen CT; Knall EN; Park H; Englund D; Lončar M; Sukachev DD; Lukin MD
    Nature; 2020 Apr; 580(7801):60-64. PubMed ID: 32238931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum frequency conversion of quantum memory compatible photons to telecommunication wavelengths.
    Fernandez-Gonzalvo X; Corrielli G; Albrecht B; Grimau ML; Cristiani M; de Riedmatten H
    Opt Express; 2013 Aug; 21(17):19473-87. PubMed ID: 24105495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient quantum memory for light.
    Hedges MP; Longdell JJ; Li Y; Sellars MJ
    Nature; 2010 Jun; 465(7301):1052-6. PubMed ID: 20577210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold-Atom Temporally Multiplexed Quantum Memory with Cavity-Enhanced Noise Suppression.
    Heller L; Farrera P; Heinze G; de Riedmatten H
    Phys Rev Lett; 2020 May; 124(21):210504. PubMed ID: 32530694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly Efficient Storage of 25-Dimensional Photonic Qudit in a Cold-Atom-Based Quantum Memory.
    Dong MX; Zhang WH; Zeng L; Ye YH; Li DC; Guo GC; Ding DS; Shi BS
    Phys Rev Lett; 2023 Dec; 131(24):240801. PubMed ID: 38181137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon Noise Suppression by a Built-in Feedback Loop.
    Al-Ashouri A; Kurzmann A; Merkel B; Ludwig A; Wieck AD; Lorke A; Geller M
    Nano Lett; 2019 Jan; 19(1):135-141. PubMed ID: 30560670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-photon microwave photonics.
    Yang Y; Jin Y; Xiang X; Hao T; Li W; Liu T; Zhang S; Zhu N; Dong R; Li M
    Sci Bull (Beijing); 2022 Apr; 67(7):700-706. PubMed ID: 36546134
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protecting Quantum Information via Destructive Interference of Correlated Noise.
    Salhov A; Cao Q; Cai J; Retzker A; Jelezko F; Genov G
    Phys Rev Lett; 2024 May; 132(22):223601. PubMed ID: 38877916
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.