These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37897768)

  • 21. Gradient echo quantum memory in warm atomic vapor.
    Pinel O; Hosseini M; Sparkes BM; Everett JL; Higginbottom D; Campbell GT; Lam PK; Buchler BC
    J Vis Exp; 2013 Nov; (81):e50552. PubMed ID: 24300586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimizing High-Efficiency Quantum Memory with Quantum Machine Learning for Near-Term Quantum Devices.
    Gyongyosi L; Imre S
    Sci Rep; 2020 Jan; 10(1):135. PubMed ID: 31924814
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ideal-observer detectability in photon-counting differential phase-contrast imaging using a linear-systems approach.
    Fredenberg E; Danielsson M; Stayman JW; Siewerdsen JH; Aslund M
    Med Phys; 2012 Sep; 39(9):5317-35. PubMed ID: 22957600
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tapered InP nanowire arrays for efficient broadband high-speed single-photon detection.
    Gibson SJ; van Kasteren B; Tekcan B; Cui Y; van Dam D; Haverkort JEM; Bakkers EPAM; Reimer ME
    Nat Nanotechnol; 2019 May; 14(5):473-479. PubMed ID: 30833690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhancing photon generation rate with broadband room-temperature quantum memory.
    Zhang CN; Pang XL; Dou JP; Li H; Yang TH; Jin XM
    Sci Rep; 2022 Dec; 12(1):21900. PubMed ID: 36535978
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Resolving the temporal evolution of line broadening in single quantum emitters.
    Schimpf C; Reindl M; Klenovský P; Fromherz T; Covre Da Silva SF; Hofer J; Schneider C; Höfling S; Trotta R; Rastelli A
    Opt Express; 2019 Nov; 27(24):35290-35307. PubMed ID: 31878701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photon storage and routing in quantum dots with spin-orbit coupling.
    Shou C; Zhang Q; Luo W; Huang G
    Opt Express; 2021 Mar; 29(7):9772-9785. PubMed ID: 33820130
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Magnetically tuned, robust and efficient filtering system for spatially multimode quantum memory in warm atomic vapors.
    Dąbrowski M; Chrapkiewicz R; Wasilewski W
    J Mod Opt; 2016 Nov; 63(20):2029-2038. PubMed ID: 27695199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cavity-Enhanced Room-Temperature Broadband Raman Memory.
    Saunders DJ; Munns JH; Champion TF; Qiu C; Kaczmarek KT; Poem E; Ledingham PM; Walmsley IA; Nunn J
    Phys Rev Lett; 2016 Mar; 116(9):090501. PubMed ID: 26991164
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A waveguide frequency converter connecting rubidium-based quantum memories to the telecom C-band.
    Albrecht B; Farrera P; Fernandez-Gonzalvo X; Cristiani M; de Riedmatten H
    Nat Commun; 2014 Feb; 5():3376. PubMed ID: 24572696
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Efficient quantum memory for photonic polarization qubits generated by cavity-enhanced spontaneous parametric downconversion.
    Tseng YC; Wei YC; Chen YC
    Opt Express; 2022 May; 30(11):19944-19960. PubMed ID: 36221757
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elimination of noise in optically rephased photon echoes.
    Ma YZ; Jin M; Chen DL; Zhou ZQ; Li CF; Guo GC
    Nat Commun; 2021 Jul; 12(1):4378. PubMed ID: 34282136
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photonic crystal-based flat lens integrated on a Bragg mirror for high-Q external cavity low noise laser.
    Seghilani MS; Sellahi M; Devautour M; Lalanne P; Sagnes I; Beaudoin G; Myara M; Lafosse X; Legratiet L; Yang J; Garnache A
    Opt Express; 2014 Mar; 22(5):5962-76. PubMed ID: 24663933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-photon-level quantum memory at room temperature.
    Reim KF; Michelberger P; Lee KC; Nunn J; Langford NK; Walmsley IA
    Phys Rev Lett; 2011 Jul; 107(5):053603. PubMed ID: 21867069
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporal quantum noise reduction acquired by an electron-multiplying charge-coupled-device camera.
    Li F; Li T; Agarwal GS
    Opt Express; 2020 Dec; 28(25):37538-37545. PubMed ID: 33379586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency.
    Hsiao YF; Tsai PJ; Chen HS; Lin SX; Hung CC; Lee CH; Chen YH; Chen YF; Yu IA; Chen YC
    Phys Rev Lett; 2018 May; 120(18):183602. PubMed ID: 29775362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Telecom-band-integrated multimode photonic quantum memory.
    Zhang X; Zhang B; Wei S; Li H; Liao J; Li C; Deng G; Wang Y; Song H; You L; Jing B; Chen F; Guo G; Zhou Q
    Sci Adv; 2023 Jul; 9(28):eadf4587. PubMed ID: 37450592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Purcell-Enhanced and Indistinguishable Single-Photon Generation from Quantum Dots Coupled to On-Chip Integrated Ring Resonators.
    Dusanowski Ł; Köck D; Shin E; Kwon SH; Schneider C; Höfling S
    Nano Lett; 2020 Sep; 20(9):6357-6363. PubMed ID: 32706592
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High efficiency coherent optical memory with warm rubidium vapour.
    Hosseini M; Sparkes BM; Campbell G; Lam PK; Buchler BC
    Nat Commun; 2011 Feb; 2():174. PubMed ID: 21285952
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward real-time quantum imaging with a single pixel camera.
    Lawrie BJ; Pooser RC
    Opt Express; 2013 Mar; 21(6):7549-59. PubMed ID: 23546137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.