These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 37898004)

  • 1. Making waves: Enhancing pollutant biodegradation via rational engineering of microbial consortia.
    Karakurt-Fischer S; Johnson DR; Fenner K; Hafner J
    Water Res; 2023 Dec; 247():120756. PubMed ID: 37898004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives.
    Wang J; Zhang L; He Y; Ji R
    J Hazard Mater; 2024 May; 469():133906. PubMed ID: 38430590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancing Microbial Pollutant Degradation by Integrating Eco-Evolutionary Principles with Environmental Biotechnology.
    Borchert E; Hammerschmidt K; Hentschel U; Deines P
    Trends Microbiol; 2021 Oct; 29(10):908-918. PubMed ID: 33812769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Effect of Rhamnolipids and Inoculation on the Bioremediation of Petroleum-Contaminated Soils by Bacterial Consortia.
    Xue SW; Huang C; Tian YX; Li YB; Li J; Ma YL
    Curr Microbiol; 2020 Jun; 77(6):997-1005. PubMed ID: 32002627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Degradation of polycyclic aromatic hydrocarbons by microbial consortia enriched from three soils using two different culture media.
    Wu M; Chen L; Tian Y; Ding Y; Dick WA
    Environ Pollut; 2013 Jul; 178():152-8. PubMed ID: 23570783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of PAH-degrading mixed microbial consortia by induced selection in soil.
    Zafra G; Absalón ÁE; Anducho-Reyes MÁ; Fernandez FJ; Cortés-Espinosa DV
    Chemosphere; 2017 Apr; 172():120-126. PubMed ID: 28063314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dispersal networks for enhancing bacterial degradation in heterogeneous environments.
    Banitz T; Wick LY; Fetzer I; Frank K; Harms H; Johst K
    Environ Pollut; 2011 Oct; 159(10):2781-8. PubMed ID: 21645953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phylogenetic distance affects the artificial microbial consortia's effectiveness and colonization during the bioremediation of polluted soil with Cr(VI) and atrazine.
    Li X; Wu S; Fan H; Dong Y; Wang Y; Bai Z; Jing C; Zhuang X
    J Hazard Mater; 2023 Jul; 454():131460. PubMed ID: 37141777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation.
    Omrani R; Spini G; Puglisi E; Saidane D
    Biodegradation; 2018 Apr; 29(2):187-209. PubMed ID: 29492776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perspectives and vision for strain selection in bioaugmentation.
    Singer AC; van der Gast CJ; Thompson IP
    Trends Biotechnol; 2005 Feb; 23(2):74-7. PubMed ID: 15661343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal.
    Tao K; Zhang X; Chen X; Liu X; Hu X; Yuan X
    Chemosphere; 2019 May; 222():831-838. PubMed ID: 30743234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of soil contamination with PAH on microbial community dynamics and expression level of genes responsible for biodegradation of PAH and production of rhamnolipids.
    Szczepaniak Z; Czarny J; Staninska-Pięta J; Lisiecki P; Zgoła-Grześkowiak A; Cyplik P; Chrzanowski Ł; Wolko Ł; Marecik R; Juzwa W; Glazar K; Piotrowska-Cyplik A
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):23043-23056. PubMed ID: 27585583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of microorganisms in petroleum degradation: Current development and prospects.
    Chunyan X; Qaria MA; Qi X; Daochen Z
    Sci Total Environ; 2023 Mar; 865():161112. PubMed ID: 36586680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioaugmentation: an approach to biological treatment of pollutants.
    Chettri D; Verma AK; Verma AK
    Biodegradation; 2024 Apr; 35(2):117-135. PubMed ID: 37684525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial communities and functional genes stimulated during phenanthrene degradation in soil by bio-microcapsules.
    Dou R; Sun J; Lu J; Deng F; Yang C; Lu G; Dang Z
    Ecotoxicol Environ Saf; 2021 Apr; 212():111970. PubMed ID: 33517034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soil bacterial community dynamics following surfactant addition and bioaugmentation in pyrene-contaminated soils.
    Wolf DC; Cryder Z; Gan J
    Chemosphere; 2019 Sep; 231():93-102. PubMed ID: 31128356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia.
    Jariyal M; Jindal V; Mandal K; Gupta VK; Singh B
    Ecotoxicol Environ Saf; 2018 Sep; 159():310-316. PubMed ID: 29772463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaugmentation of chlorothalonil-contaminated soil with hydrolytically or reductively dehalogenating strain and its effect on soil microbial community.
    Xu XH; Liu XM; Zhang L; Mu Y; Zhu XY; Fang JY; Li SP; Jiang JD
    J Hazard Mater; 2018 Jun; 351():240-249. PubMed ID: 29550558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants.
    Espinosa-Ortiz EJ; Rene ER; Gerlach R
    Crit Rev Biotechnol; 2022 May; 42(3):361-383. PubMed ID: 34325585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential degradation of polycyclic aromatic hydrocarbon mixtures by indigenous microbial assemblages in soil.
    Sawulski P; Boots B; Clipson N; Doyle E
    Lett Appl Microbiol; 2015 Aug; 61(2):199-207. PubMed ID: 26031321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.