BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 37898400)

  • 1. Mitochondrial hydrogen peroxide production by pyruvate dehydrogenase and α-ketoglutarate dehydrogenase in oxidative eustress and oxidative distress.
    Chalifoux O; Faerman B; Mailloux RJ
    J Biol Chem; 2023 Dec; 299(12):105399. PubMed ID: 37898400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatty acid oxidation drives mitochondrial hydrogen peroxide production by α-ketoglutarate dehydrogenase.
    Grayson C; Faerman B; Koufos O; Mailloux RJ
    J Biol Chem; 2024 Apr; 300(4):107159. PubMed ID: 38479602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.
    O'Brien M; Chalker J; Slade L; Gardiner D; Mailloux RJ
    Free Radic Biol Med; 2017 May; 106():302-314. PubMed ID: 28242228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. S-nitroso-glutathione (GSNO) inhibits hydrogen peroxide production by alpha-ketoglutarate dehydrogenase: An investigation into sex and diet effects.
    Wang K; Moore A; Grayson C; Mailloux RJ
    Free Radic Biol Med; 2023 Aug; 204():287-300. PubMed ID: 37225107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The glutathionylation agent disulfiram augments superoxide/hydrogen peroxide production when liver mitochondria are oxidizing ubiquinone pool-linked and branched chain amino acid substrates.
    Hirschenson J; Mailloux RJ
    Free Radic Biol Med; 2021 Aug; 172():1-8. PubMed ID: 34052343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glutathionylation of α-ketoglutarate dehydrogenase: the chemical nature and relative susceptibility of the cofactor lipoic acid to modification.
    McLain AL; Cormier PJ; Kinter M; Szweda LI
    Free Radic Biol Med; 2013 Aug; 61():161-9. PubMed ID: 23567190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of the hydrogen peroxide producing capacities of liver and cardiac mitochondria isolated from C57BL/6N and C57BL/6J mice.
    Oldford C; Kuksal N; Gill R; Young A; Mailloux RJ
    Free Radic Biol Med; 2019 May; 135():15-27. PubMed ID: 30794944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective inactivation of alpha-ketoglutarate dehydrogenase and pyruvate dehydrogenase: reaction of lipoic acid with 4-hydroxy-2-nonenal.
    Humphries KM; Szweda LI
    Biochemistry; 1998 Nov; 37(45):15835-41. PubMed ID: 9843389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox imbalance due to the loss of mitochondrial NAD(P)-transhydrogenase markedly aggravates high fat diet-induced fatty liver disease in mice.
    Navarro CDC; Figueira TR; Francisco A; Dal'Bó GA; Ronchi JA; Rovani JC; Escanhoela CAF; Oliveira HCF; Castilho RF; Vercesi AE
    Free Radic Biol Med; 2017 Dec; 113():190-202. PubMed ID: 28964917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase.
    Tretter L; Adam-Vizi V
    J Neurosci; 2004 Sep; 24(36):7771-8. PubMed ID: 15356188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-Oxoglutarate dehydrogenase is a more significant source of O2(·-)/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue.
    Mailloux RJ; Gardiner D; O'Brien M
    Free Radic Biol Med; 2016 Aug; 97():501-512. PubMed ID: 27394173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor.
    McLain AL; Szweda PA; Szweda LI
    Free Radic Res; 2011 Jan; 45(1):29-36. PubMed ID: 21110783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emerging importance of the α-keto acid dehydrogenase complexes in serving as intracellular and intercellular signaling platforms for the regulation of metabolism.
    Mailloux RJ
    Redox Biol; 2024 Jun; 72():103155. PubMed ID: 38615490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.
    Quinlan CL; Goncalves RL; Hey-Mogensen M; Yadava N; Bunik VI; Brand MD
    J Biol Chem; 2014 Mar; 289(12):8312-25. PubMed ID: 24515115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart.
    Wagner M; Bertero E; Nickel A; Kohlhaas M; Gibson GE; Heggermont W; Heymans S; Maack C
    Basic Res Cardiol; 2020 Aug; 115(5):53. PubMed ID: 32748289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status.
    Nulton-Persson AC; Starke DW; Mieyal JJ; Szweda LI
    Biochemistry; 2003 Apr; 42(14):4235-42. PubMed ID: 12680778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress.
    Tretter L; Adam-Vizi V
    J Neurosci; 2000 Dec; 20(24):8972-9. PubMed ID: 11124972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyruvate dehydrogenase deficiency in spinocerebellar degenerations.
    Kark RA; Rodriguez-Budelli M
    Neurology; 1979 Jan; 29(1):126-31. PubMed ID: 106330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the impact of glutaredoxin-2 (GRX2) deficiency on superoxide/hydrogen peroxide release from cardiac and liver mitochondria.
    Chalker J; Gardiner D; Kuksal N; Mailloux RJ
    Redox Biol; 2018 May; 15():216-227. PubMed ID: 29274570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonezymatic formation of succinate in mitochondria under oxidative stress.
    Fedotcheva NI; Sokolov AP; Kondrashova MN
    Free Radic Biol Med; 2006 Jul; 41(1):56-64. PubMed ID: 16781453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.