These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37898629)

  • 1. Precise synthetic control of exclusive ligand effect boosts oxygen reduction catalysis.
    Tao L; Wang K; Lv F; Mi H; Lin F; Luo H; Guo H; Zhang Q; Gu L; Luo M; Guo S
    Nat Commun; 2023 Oct; 14(1):6893. PubMed ID: 37898629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis.
    Tao L; Huang B; Jin F; Yang Y; Luo M; Sun M; Liu Q; Gao F; Guo S
    ACS Nano; 2020 Sep; 14(9):11570-11578. PubMed ID: 32816456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exclusive Strain Effect Boosts Overall Water Splitting in PdCu/Ir Core/Shell Nanocrystals.
    Li M; Zhao Z; Xia Z; Luo M; Zhang Q; Qin Y; Tao L; Yin K; Chao Y; Gu L; Yang W; Yu Y; Lu G; Guo S
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8243-8250. PubMed ID: 33434387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning Surface Structure and Strain in Pd-Pt Core-Shell Nanocrystals for Enhanced Electrocatalytic Oxygen Reduction.
    Xiong Y; Shan H; Zhou Z; Yan Y; Chen W; Yang Y; Liu Y; Tian H; Wu J; Zhang H; Yang D
    Small; 2017 Feb; 13(7):. PubMed ID: 27860266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bimetallic palladium-copper nanoplates with optimized d-band center simultaneously boost oxygen reduction activity and methanol tolerance.
    Huang S; Wang J; Hu H; Li Y; Xu F; Duan F; Zhu H; Lu S; Du M
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):375-384. PubMed ID: 36265339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biaxially Compressive Strain in Ni/Ru Core/Shell Nanoplates Boosts Li-CO
    Fan L; Shen H; Ji D; Xing Y; Tao L; Sun Q; Guo S
    Adv Mater; 2022 Jul; 34(30):e2204134. PubMed ID: 35640098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the Pt Shell Thickness on the Oxygen Reduction Reaction on a Well-Defined Pd@Pt Core-Shell Model Surface.
    Hashiguchi Y; Nakamura I; Honma T; Matsushita T; Murayama H; Tokunaga M; Choe YK; Fujitani T
    Chemphyschem; 2023 Jan; 24(1):e202200389. PubMed ID: 36089540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis.
    Bu L; Zhang N; Guo S; Zhang X; Li J; Yao J; Wu T; Lu G; Ma JY; Su D; Huang X
    Science; 2016 Dec; 354(6318):1410-1414. PubMed ID: 27980207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epitaxial Growth of Multimetallic Pd@PtM (M = Ni, Rh, Ru) Core-Shell Nanoplates Realized by in Situ-Produced CO from Interfacial Catalytic Reactions.
    Yan Y; Shan H; Li G; Xiao F; Jiang Y; Yan Y; Jin C; Zhang H; Wu J; Yang D
    Nano Lett; 2016 Dec; 16(12):7999-8004. PubMed ID: 27960487
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction.
    Yang J; Yang J; Ying JY
    ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Icosahedral Pt-Ni Nanocrystalline Electrocatalyst: Growth Mechanism and Oxygen Reduction Activity.
    Tian R; Shen S; Zhu F; Luo L; Yan X; Wei G; Zhang J
    ChemSusChem; 2018 Mar; 11(6):1015-1019. PubMed ID: 29380546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile synthesis of bimetallic nanoplates consisting of Pd cores and Pt shells through seeded epitaxial growth.
    Lim B; Wang J; Camargo PH; Jiang M; Kim MJ; Xia Y
    Nano Lett; 2008 Aug; 8(8):2535-40. PubMed ID: 18616327
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Favorable Core/Shell Interface within Co
    Liu C; Ma Z; Cui M; Zhang Z; Zhang X; Su D; Murray CB; Wang JX; Zhang S
    Nano Lett; 2018 Dec; 18(12):7870-7875. PubMed ID: 30427689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering the electronic and strained interface for high activity of PdM
    Nan H; Su YQ; Tang C; Cao R; Li D; Yu J; Liu Q; Deng Y; Tian X
    Sci Bull (Beijing); 2020 Aug; 65(16):1396-1404. PubMed ID: 36659219
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction.
    Wang X; Orikasa Y; Takesue Y; Inoue H; Nakamura M; Minato T; Hoshi N; Uchimoto Y
    J Am Chem Soc; 2013 Apr; 135(16):5938-41. PubMed ID: 23560913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds.
    Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE
    Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Facile Synthesis of Co
    Chou SC; Tso KC; Hsieh YC; Sun BY; Lee JF; Wu PW
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32545822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shaped Pd-Ni-Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations.
    Sneed BT; Young AP; Jalalpoor D; Golden MC; Mao S; Jiang Y; Wang Y; Tsung CK
    ACS Nano; 2014 Jul; 8(7):7239-50. PubMed ID: 24896733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.