These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 378998)

  • 1. The effect of chemical modification of 3-(3-amino-3-carboxypropyl)uridine on tRNA function.
    Friedman S
    J Biol Chem; 1979 Aug; 254(15):7111-5. PubMed ID: 378998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photolabile and paramagnetic derivatives of the nucleoside X and of Escherichia coli tRNAPhe.
    Hansske F; Watanabe K; Cramer F; Seela F
    Hoppe Seylers Z Physiol Chem; 1978 Dec; 359(12):1659-65. PubMed ID: 216614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of chemical modification of the CCA end of yeast tRNAPhe on its biological activity on ribosomes.
    Kruse TA; Siboska GE; Sprinzl M; Clark BF
    Eur J Biochem; 1980; 107(1):1-6. PubMed ID: 6995110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. E coli tRNAPhe modified at the 3-(3-amino-3-carboxypropyl) uridine with a photoaffinity label is fully functional for aminoacylation and for ribosomal interaction.
    Schwartz I; Ofengand J
    Biochim Biophys Acta; 1982 Jun; 697(3):330-5. PubMed ID: 7049245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ribothymidine in mammalian tRNAPhe.
    Roe BA; Tsen HY
    Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3696-700. PubMed ID: 269424
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ability of modified forms of phenylalanine tRNA to stimulate guanosine pentaphosphate synthesis by the stringent factor-ribosome complex of E. coli.
    Ofengand J; Liou R
    Nucleic Acids Res; 1978 Apr; 5(4):1325-34. PubMed ID: 349503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of codon-anticodon interaction in ribosomes. Direct functional evidence that isolated 30S subunits contain two codon-specific binding sites for transfer RNA.
    Kirillov SV; Makhno VI; Semenkov YP
    Nucleic Acids Res; 1980 Jan; 8(1):183-96. PubMed ID: 6986612
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replacement of wybutine by hydrazines and its effect on the active conformation of yeast tRNAPhe.
    Schleich HG; Wintermeyer W; Zachau HG
    Nucleic Acids Res; 1978 May; 5(5):1701-13. PubMed ID: 351568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dipeptide formation with misacylated tRNAPhes.
    Heckler TG; Zama Y; Naka T; Hecht SM
    J Biol Chem; 1983 Apr; 258(7):4492-5. PubMed ID: 6339501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [On the role of N7 atoms of guanosine in tRNA-Phe (E. coli) in interaction with ribosomes].
    Vlasov VV; Knorre DG; Skobel'tsyna LM
    Biokhimiia; 1977 May; 42(5):784-7. PubMed ID: 329897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of discrimination between cognate and non-cognate tRNAs by phenylalanyl-tRNA synthetase from yeast.
    Krauss G; Riesner D; Maass G
    Eur J Biochem; 1976 Sep; 68(1):81-93. PubMed ID: 9288
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding.
    Grajevskaja RA; Ivanov YV; Saminsky EM
    Eur J Biochem; 1982 Nov; 128(1):47-52. PubMed ID: 6184228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Covalent cross-linking of transfer ribonucleic acid to the ribosomal P site. Mechanism and site of reaction in transfer ribonucleic acid.
    Ofengand J; Liou R; Kohut J; Schwartz I; Zimmermann RA
    Biochemistry; 1979 Oct; 18(20):4322-32. PubMed ID: 385051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of codon-anticodon interaction in ribosomes: comparative study of interaction of Phe-tRNAPhe and N-acetyl-Phe-tRNAPhe with the donor site of Escherichia coli ribosomes.
    Kirillov SV; Katunin VI; Semenkov YP
    FEBS Lett; 1981 Mar; 125(1):15-9. PubMed ID: 7014251
    [No Abstract]   [Full Text] [Related]  

  • 15. On the role of ribosylthymine in prokaryotic tRNA function.
    Kersten H; Albani M; Männlein E; Praisler R; Wurmbach P; Nierhaus KH
    Eur J Biochem; 1981 Feb; 114(2):451-6. PubMed ID: 7011814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system.
    Baksht E; de Groot N; Sprinzl M; Cramer F
    Biochemistry; 1976 Aug; 15(16):3639-46. PubMed ID: 782520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified tRNAs for probing tRNA binding sites on the ribosome.
    Podkowinski J; Dymarek-Babs T; Gornicki P
    Acta Biochim Pol; 1989; 36(3-4):235-44. PubMed ID: 2486000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Characterization of fluorescent derivatives of tRNA Phe by experiments in the ribosomal system].
    Bintermaĭer V; Tsakhau GG
    Mol Biol (Mosk); 1975; 9(1):63-9. PubMed ID: 768743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Replacement of pseudouridine in transfer RNA by 5-fluorouridine does not affect the ability to stimulate the synthesis of guanosine 5'-triphosphate 3'-diphosphate.
    Chinali G; Horowitz J; Ofengand J
    Biochemistry; 1978 Jul; 17(14):2755-60. PubMed ID: 356873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mechanism of codon-anticodon interaction in ribosomes. Quantitative study of codon-dependent binding of tRNA to the 30-S ribosomal subunits of Escherichia coli.
    Kirillov SV; Makhno VI; Semenkov YP
    Eur J Biochem; 1978 Aug; 89(1):297-304. PubMed ID: 359329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.