These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 37900277)

  • 1. Regulation of otic neurosensory specification by Notch and Wnt signalling: insights from RNA-seq screenings in the embryonic chicken inner ear.
    Żak M; Støle TP; Plagnol V; Daudet N
    Front Cell Dev Biol; 2023; 11():1245330. PubMed ID: 37900277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gradient of Wnt activity positions the neurosensory domains of the inner ear.
    Żak M; Daudet N
    Elife; 2021 Mar; 10():. PubMed ID: 33704062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification.
    Neves J; Parada C; Chamizo M; Giráldez F
    Development; 2011 Feb; 138(4):735-44. PubMed ID: 21266409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential regulation of Hes/Hey genes during inner ear development.
    Petrovic J; Gálvez H; Neves J; Abelló G; Giraldez F
    Dev Neurobiol; 2015 Jul; 75(7):703-20. PubMed ID: 25363712
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Notch signaling specifies prosensory domains via lateral induction in the developing mammalian inner ear.
    Hartman BH; Reh TA; Bermingham-McDonogh O
    Proc Natl Acad Sci U S A; 2010 Sep; 107(36):15792-7. PubMed ID: 20798046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical roles of FGF, RA, and WNT signalling in the development of the human otic placode and subsequent lineages in a dish.
    Saeki T; Yoshimatsu S; Ishikawa M; Hon CC; Koya I; Shibata S; Hosoya M; Saegusa C; Ogawa K; Shin JW; Fujioka M; Okano H
    Regen Ther; 2022 Jun; 20():165-186. PubMed ID: 35620640
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Wnt and Notch signalling pathways in the developing cochlea: Formation of hair cells and induction of regenerative potential.
    Żak M; Klis SF; Grolman W
    Int J Dev Neurosci; 2015 Dec; 47(Pt B):247-58. PubMed ID: 26471908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo.
    Neves J; Abelló G; Petrovic J; Giraldez F
    Dev Growth Differ; 2013 Jan; 55(1):96-112. PubMed ID: 23252974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Notch signaling augments the canonical Wnt pathway to specify the size of the otic placode.
    Jayasena CS; Ohyama T; Segil N; Groves AK
    Development; 2008 Jul; 135(13):2251-61. PubMed ID: 18495817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooperative and independent functions of FGF and Wnt signaling during early inner ear development.
    Wright KD; Mahoney Rogers AA; Zhang J; Shim K
    BMC Dev Biol; 2015 Oct; 15():33. PubMed ID: 26443994
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression patterns of Irx genes in the developing chick inner ear.
    Cardeña-Núñez S; Sánchez-Guardado LÓ; Corral-San-Miguel R; Rodríguez-Gallardo L; Marín F; Puelles L; Aroca P; Hidalgo-Sánchez M
    Brain Struct Funct; 2017 Jul; 222(5):2071-2092. PubMed ID: 27783221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Roles of Wnt8a during formation and patterning of the mouse inner ear.
    Vendrell V; Vázquez-Echeverría C; López-Hernández I; Alonso BD; Martinez S; Pujades C; Schimmang T
    Mech Dev; 2013 Feb; 130(2-3):160-8. PubMed ID: 23041177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Wnt/β-catenin signaling in proliferation and regeneration of the developing basilar papilla and lateral line.
    Jacques BE; Montgomery WH; Uribe PM; Yatteau A; Asuncion JD; Resendiz G; Matsui JI; Dabdoub A
    Dev Neurobiol; 2014 Apr; 74(4):438-56. PubMed ID: 24115534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of Wnt, frizzled, and Wnt inhibitor gene expression domains in the avian otic primordium.
    Sienknecht UJ; Fekete DM
    J Comp Neurol; 2009 Dec; 517(6):751-64. PubMed ID: 19842206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial induction of Sox21 regulates sensory cell formation in the embryonic chicken inner ear.
    Freeman SD; Daudet N
    PLoS One; 2012; 7(10):e46387. PubMed ID: 23071561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development of the vertebrate inner ear.
    Torres M; Giráldez F
    Mech Dev; 1998 Feb; 71(1-2):5-21. PubMed ID: 9507049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of her4 in inner ear development and its relationship with proneural genes and Notch signalling.
    Radosevic M; Fargas L; Alsina B
    PLoS One; 2014; 9(10):e109860. PubMed ID: 25299450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specification of the otic placode depends on Sox9 function in Xenopus.
    Saint-Germain N; Lee YH; Zhang Y; Sargent TD; Saint-Jeannet JP
    Development; 2004 Apr; 131(8):1755-63. PubMed ID: 15084460
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tol2-mediated gene transfer and in ovo electroporation of the otic placode: a powerful and versatile approach for investigating embryonic development and regeneration of the chicken inner ear.
    Freeman S; Chrysostomou E; Kawakami K; Takahashi Y; Daudet N
    Methods Mol Biol; 2012; 916():127-39. PubMed ID: 22914937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene transfer to the developing mouse inner ear by in vivo electroporation.
    Wang L; Jiang H; Brigande JV
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22781586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.