BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 3790079)

  • 1. Theoretical prediction and experimental measurement of the bile-pigment isomer pattern obtained from degradation of catalase haem.
    Brindle NJ; North AC; Brown SB
    Biochem J; 1986 May; 236(1):303-6. PubMed ID: 3790079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientation of oxygen in oxyhaemoproteins and its implications for haem catabolism.
    Brown SB; Chabot AA; Enderby EA; North AC
    Nature; 1981 Jan; 289(5793):93-5. PubMed ID: 7453813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereospecific haem cleavage. A model for the formation of bile-pigment isomers in vivo and in vitro.
    Brown SB
    Biochem J; 1976 Oct; 159(1):23-7. PubMed ID: 999640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bile-pigment formation from different leghaemoglobins. Methine-bridge specificity of coupled oxidation.
    Lehtovaara P; Perttilä U
    Biochem J; 1978 Nov; 176(2):359-64. PubMed ID: 743244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haem degradation in human haemoglobin in vitro. Separation of the contribution of the alpha- and beta-subunits.
    Docherty JC; Brown SB
    Biochem J; 1984 Sep; 222(2):401-6. PubMed ID: 6477522
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mechanism of haem catabolism. A study of haem breakdown in spleen microsomal fraction and in a model system by 18O labelling and metal substitution.
    King RF; Brown SB
    Biochem J; 1978 Jul; 174(1):103-9. PubMed ID: 697745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress promotes degradation of the Irr protein to regulate haem biosynthesis in Bradyrhizobium japonicum.
    Yang J; Panek HR; O'Brian MR
    Mol Microbiol; 2006 Apr; 60(1):209-18. PubMed ID: 16556232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structures of the high-valent metal-ion haem-oxygen intermediates in peroxidases, oxygenases and catalases.
    Hersleth HP; Ryde U; Rydberg P; Görbitz CH; Andersson KK
    J Inorg Biochem; 2006 Apr; 100(4):460-76. PubMed ID: 16510192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haem degradation in abnormal haemoglobins.
    Brown SB; Docherty JC
    Biochem J; 1978 Sep; 173(3):985-7. PubMed ID: 708385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heme degradation by reactive oxygen species.
    Nagababu E; Rifkind JM
    Antioxid Redox Signal; 2004 Dec; 6(6):967-78. PubMed ID: 15548894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of cytochrome P-450 haem by carbon tetrachloride and 2-allyl-2-isopropylacetamide in rat liver in vivo and in vitro. Involvement of non-carbon monoxide-forming mechanisms.
    Guzelian PS; Swisher RW
    Biochem J; 1979 Dec; 184(3):481-9. PubMed ID: 120199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geminate carbon monoxide rebinding to a c-type haem.
    Silkstone G; Jasaitis A; Vos MH; Wilson MT
    Dalton Trans; 2005 Nov; (21):3489-94. PubMed ID: 16234930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Biology of Bacterial Haemophores.
    Ascenzi P; di Masi A; Leboffe L; Frangipani E; Nardini M; Verde C; Visca P
    Adv Microb Physiol; 2015; 67():127-76. PubMed ID: 26616517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the enzymatic activity of catalase: an iron L-edge X-ray absorption study of the active centre.
    Bergmann N; Bonhommeau S; Lange KM; Greil SM; Eisebitt S; de Groot F; Chergui M; Aziz EF
    Phys Chem Chem Phys; 2010 May; 12(18):4827-32. PubMed ID: 20428565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loss of haem from cytochrome P-450 caused by lipid peroxidation and 2-allyl-2-isoprophylacetamide. An abnormal pathway not involving production of carbon monoxide.
    De Matteis F; Gibbs AH; Unseld A
    Biochem J; 1977 Dec; 168(3):417-22. PubMed ID: 606245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of haem degradation in vitro. Kinetic evidence for the formation of a haem-oxygen complex.
    Brown SB; Thomas SE
    Biochem J; 1978 Oct; 176(1):327-30. PubMed ID: 728112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Haem oxygenase-1 overexpression alters intracellular iron distribution.
    Lanceta L; Li C; Choi AM; Eaton JW
    Biochem J; 2013 Jan; 449(1):189-94. PubMed ID: 22989377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and heme environment of beef liver catalase at 2.5 A resolution.
    Reid TJ; Murthy MR; Sicignano A; Tanaka N; Musick WD; Rossmann MG
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4767-71. PubMed ID: 6946424
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of an NADH-dependent haem-degrading system in ox heart mitochondria.
    Kutty RK; Maines MD
    Biochem J; 1987 Sep; 246(2):467-74. PubMed ID: 3120697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oxygen and haem regulate the synthesis of peroxisomal proteins: catalase A, acyl-CoA oxidase and Pex1p in the yeast Saccharomyces cerevisiae; the regulation of these proteins by oxygen is not mediated by haem.
    Skoneczny M; Rytka J
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):313-9. PubMed ID: 10926859
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.