These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
100 related articles for article (PubMed ID: 3790092)
21. D-amino acids in aging erythrocytes. Ingrosso D; Perna AF EXS; 1998; 85():119-41. PubMed ID: 9949872 [TBL] [Abstract][Full Text] [Related]
22. Protein carboxyl methyltransferase from cow eye lens. McFadden PN; Horwitz J; Clarke S Biochem Biophys Res Commun; 1983 Jun; 113(2):418-24. PubMed ID: 6870865 [TBL] [Abstract][Full Text] [Related]
23. Methylation of protein aspartates and deamidated asparagines as a function of blood bank storage and oxidative stress in human red blood cells. Reisz JA; Nemkov T; Dzieciatkowska M; Culp-Hill R; Stefanoni D; Hill RC; Yoshida T; Dunham A; Kanias T; Dumont LJ; Busch M; Eisenmesser EZ; Zimring JC; Hansen KC; D'Alessandro A Transfusion; 2018 Dec; 58(12):2978-2991. PubMed ID: 30312994 [TBL] [Abstract][Full Text] [Related]
24. Protein damage and methylation-mediated repair in the erythrocyte. Galletti P; Ingrosso D; Manna C; Clemente G; Zappia V Biochem J; 1995 Mar; 306 ( Pt 2)(Pt 2):313-25. PubMed ID: 7887885 [No Abstract] [Full Text] [Related]
25. Identification of aspartic acid as a site of methylation in human erythrocyte membrane proteins. Janson CA; Clarke S J Biol Chem; 1980 Dec; 255(24):11640-3. PubMed ID: 7440560 [TBL] [Abstract][Full Text] [Related]
26. Influence of osmotic stress on protein methylation in resealed erythrocytes. Ingrosso D; Cotticelli MG; D'Angelo S; Buro MD; Zappia V; Galletti P Eur J Biochem; 1997 Mar; 244(3):918-22. PubMed ID: 9108266 [TBL] [Abstract][Full Text] [Related]
27. Conversion of isoaspartyl peptides to normal peptides: implications for the cellular repair of damaged proteins. McFadden PN; Clarke S Proc Natl Acad Sci U S A; 1987 May; 84(9):2595-9. PubMed ID: 3472227 [TBL] [Abstract][Full Text] [Related]
28. Guanosine 5'-(3-O-Thio)triphosphate stimulates protein carboxyl methylation in cell membranes. Desrosiers RR; Béliveau R Arch Biochem Biophys; 1999 Jul; 367(2):333-40. PubMed ID: 10395752 [TBL] [Abstract][Full Text] [Related]
29. Racemization of individual aspartate residues in human myelin basic protein. Shapira R; Wilkinson KD; Shapira G J Neurochem; 1988 Feb; 50(2):649-54. PubMed ID: 2447246 [TBL] [Abstract][Full Text] [Related]
30. Hypotheses on the physiological role of enzymatic protein methyl esterification using human erythrocytes as a model system. Galletti P; Manna C; Ingrosso D; Iardino P; Zappia V Adv Exp Med Biol; 1991; 307():149-60. PubMed ID: 1805583 [No Abstract] [Full Text] [Related]
31. Differential membrane protein carboxyl-methylation of intact human erythrocytes by exogenous methyl donors. Ro JY; DiMaria P; Kim S Biochem J; 1984 May; 219(3):743-9. PubMed ID: 6743244 [TBL] [Abstract][Full Text] [Related]
32. Prediction of binding modes between protein L-isoaspartyl (D-aspartyl) O-methyltransferase and peptide substrates including isomerized aspartic acid residues using in silico analytic methods for the substrate screening. Oda A; Noji I; Fukuyoshi S; Takahashi O J Pharm Biomed Anal; 2015 Dec; 116():116-22. PubMed ID: 25758062 [TBL] [Abstract][Full Text] [Related]
33. Racemized and Isomerized Proteins in Aging Rat Teeth and Eye Lens. Warmack RA; Mansilla E; Goya RG; Clarke SG Rejuvenation Res; 2016 Aug; 19(4):309-17. PubMed ID: 26650547 [TBL] [Abstract][Full Text] [Related]
34. The effects of phosphorylation of smooth-muscle caldesmon. Ngai PK; Walsh MP Biochem J; 1987 Jun; 244(2):417-25. PubMed ID: 2822003 [TBL] [Abstract][Full Text] [Related]
35. A protein methyltransferase specific for altered aspartyl residues is important in Escherichia coli stationary-phase survival and heat-shock resistance. Li C; Clarke S Proc Natl Acad Sci U S A; 1992 Oct; 89(20):9885-9. PubMed ID: 1409717 [TBL] [Abstract][Full Text] [Related]
36. Accumulation of altered aspartyl residues in erythrocyte membrane proteins from patients with sporadic amyotrophic lateral sclerosis. D'Angelo S; Trojsi F; Salvatore A; Daniele L; Raimo M; Galletti P; Monsurrò MR Neurochem Int; 2013 Nov; 63(6):626-34. PubMed ID: 24044898 [TBL] [Abstract][Full Text] [Related]
37. Analysis of the state of posttranslational calmodulin methylation in developing pea plants. Oh SH; Roberts DM Plant Physiol; 1990 Jul; 93(3):880-7. PubMed ID: 16667596 [TBL] [Abstract][Full Text] [Related]
38. Activation of calmodulin by the essential trace element chromium. MacNeil S; Dawson R; Lakey T; Morris B Cell Calcium; 1987 Jun; 8(3):207-16. PubMed ID: 3038331 [TBL] [Abstract][Full Text] [Related]
39. Calmodulin carboxylmethyl ester formation in intact human red cells and modulation of this reaction by divalent cations in vitro. Runte L; Jürgensmeier HL; Unger C; Söling HD FEBS Lett; 1982 Oct; 147(1):125-30. PubMed ID: 7140987 [No Abstract] [Full Text] [Related]
40. Protein carboxylmethylation and nervous system function. Billingsley ML; Lovenberg W Neurochem Int; 1985; 7(4):575-87. PubMed ID: 20492963 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]