These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 37901466)

  • 1. Using sentinel nodes to evaluate changing connectivity in a protected area network.
    O'Brien P; Carr N; Bowman J
    PeerJ; 2023; 11():e16333. PubMed ID: 37901466
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating functional connectivity in designing networks of protected areas under climate change: A caribou case-study.
    Bauduin S; Cumming SG; St-Laurent MH; McIntire EJB
    PLoS One; 2020; 15(9):e0238821. PubMed ID: 32997673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling an aspirational connected network of protected areas across North America.
    Barnett K; Belote RT
    Ecol Appl; 2021 Sep; 31(6):e02387. PubMed ID: 34137106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying Corridors among Large Protected Areas in the United States.
    Belote RT; Dietz MS; McRae BH; Theobald DM; McClure ML; Irwin GH; McKinley PS; Gage JA; Aplet GH
    PLoS One; 2016; 11(4):e0154223. PubMed ID: 27104683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the connectivity of a protected areas' network under the prism of global change: the efficiency of the European Natura 2000 network for four birds of prey.
    Mazaris AD; Papanikolaou AD; Barbet-Massin M; Kallimanis AS; Jiguet F; Schmeller DS; Pantis JD
    PLoS One; 2013; 8(3):e59640. PubMed ID: 23527237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exploring the effects of protected area networks on the European land system.
    Staccione A; Brown C; Arneth A; Rounsevell M; Hrast Essenfelder A; Seo B; Mysiak J
    J Environ Manage; 2023 Jul; 337():117741. PubMed ID: 36966632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Species-free species distribution models describe macroecological properties of protected area networks.
    Robinson JL; Fordyce JA
    PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing connectivity and the contribution of private lands to protected area networks in the United States.
    Bargelt L; Fortin MJ; Murray DL
    PLoS One; 2020; 15(3):e0228946. PubMed ID: 32134937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Identification of the priority conservation areas of national park: A case study of Lishui City, Zhejiang Province, China].
    Hou M; Tang XP; Huang GL; Li RQ
    Ying Yong Sheng Tai Xue Bao; 2020 Jul; 31(7):2332-2340. PubMed ID: 32715699
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human land uses reduce climate connectivity across North America.
    Parks SA; Carroll C; Dobrowski SZ; Allred BW
    Glob Chang Biol; 2020 May; 26(5):2944-2955. PubMed ID: 31961042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting areas important for ecological connectivity throughout Canada.
    Pither R; O'Brien P; Brennan A; Hirsh-Pearson K; Bowman J
    PLoS One; 2023; 18(2):e0281980. PubMed ID: 36812251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessing habitat suitability and connectivity for the westernmost population of Asian black bear (Ursus thibetanus gedrosianus, Blanford, 1877) based on climate changes scenarios in Iran.
    Morovati M; Karami P; Bahadori Amjas F
    PLoS One; 2020; 15(11):e0242432. PubMed ID: 33206701
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Privately protected areas increase global protected area coverage and connectivity.
    Palfrey R; Oldekop JA; Holmes G
    Nat Ecol Evol; 2022 Jun; 6(6):730-737. PubMed ID: 35393602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying network theory to prioritize multispecies habitat networks that are robust to climate and land-use change.
    Albert CH; Rayfield B; Dumitru M; Gonzalez A
    Conserv Biol; 2017 Dec; 31(6):1383-1396. PubMed ID: 28383758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protected areas not likely to serve as steppingstones for species undergoing climate-induced range shifts.
    Parks SA; Holsinger LM; Abatzoglou JT; Littlefield CE; Zeller KA
    Glob Chang Biol; 2023 May; 29(10):2681-2696. PubMed ID: 36880282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathways for achieving conservation targets under metacoupled anthropogenic disturbances.
    Li Y; Jin Q; Chen Z; Yin B; Li Y; Liu J
    J Environ Manage; 2024 Feb; 353():120227. PubMed ID: 38310798
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global progress in incorporating climate adaptation into land protection for biodiversity since Aichi targets.
    Carrasco L; Papeş M; Sheldon KS; Giam X
    Glob Chang Biol; 2021 May; 27(9):1788-1801. PubMed ID: 33570817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing effects of land use on landscape connectivity: loss and fragmentation of western U.S. forests.
    Theobald DM; Crooks KR; Norman JB
    Ecol Appl; 2011 Oct; 21(7):2445-58. PubMed ID: 22073634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protected areas and agricultural expansion: Biodiversity conservation versus economic growth in the Southeast of Brazil.
    Moraes MC; Mello K; Toppa RH
    J Environ Manage; 2017 Mar; 188():73-84. PubMed ID: 27930958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wild, connected, and diverse: building a more resilient system of protected areas.
    Belote RT; Dietz MS; Jenkins CN; McKinley PS; Irwin GH; Fullman TJ; Leppi JC; Aplet GH
    Ecol Appl; 2017 Jun; 27(4):1050-1056. PubMed ID: 28263450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.