These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 37901553)
21. Research on the electrostatic characteristic of coal-fired fly ash. Qi L; Yao Y; Han T; Li J Environ Sci Pollut Res Int; 2019 Mar; 26(7):7123-7131. PubMed ID: 30648236 [TBL] [Abstract][Full Text] [Related]
22. Research on the Ash Melting Characteristics of Blended Coal Based on DFT Calculations. Chai Y; Fan Y; Wu J; Zhang Y; Luo G; Wang Y ACS Omega; 2021 Aug; 6(34):22039-22046. PubMed ID: 34497898 [TBL] [Abstract][Full Text] [Related]
23. Mechanochemical stabilization of heavy metals in fly ash from coal-fired power plants via dry milling and wet milling. Yuan Q; Zhang Y; Wang T; Wang J; Romero CE Waste Manag; 2021 Nov; 135():428-436. PubMed ID: 34619624 [TBL] [Abstract][Full Text] [Related]
24. Volatilization of toxic elements from coal samples of Thar coal field, after burning at different temperature and their mobility from ash: Risk assessment. Kazi TG; Lashari AA; Ali J; Baig JA; Afridi HI Chemosphere; 2019 Feb; 217():35-41. PubMed ID: 30391788 [TBL] [Abstract][Full Text] [Related]
25. Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. Ozden B; Guler E; Vaasma T; Horvath M; Kiisk M; Kovacs T J Environ Radioact; 2018 Aug; 188():100-107. PubMed ID: 28965987 [TBL] [Abstract][Full Text] [Related]
26. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms. Li S; Gong H; Hu H; Liu H; Huang Y; Fu B; Wang L; Yao H Chemosphere; 2020 Sep; 254():126700. PubMed ID: 32334244 [TBL] [Abstract][Full Text] [Related]
27. A pilot study of mercury liberation and capture from coal-fired power plant fly ash. Li J; Gao X; Goeckner B; Kollakowsky D; Ramme B J Air Waste Manag Assoc; 2005 Mar; 55(3):258-64. PubMed ID: 15828667 [TBL] [Abstract][Full Text] [Related]
28. Thermal conductivity of dry fly ashes with various carbon and biomass contents. Choo H; Won J; Burns SE Waste Manag; 2021 Nov; 135():122-129. PubMed ID: 34492605 [TBL] [Abstract][Full Text] [Related]
29. Effective utilization of waste ash from MSW and coal co-combustion power plant: Zeolite synthesis. Fan Y; Zhang FS; Zhu J; Liu Z J Hazard Mater; 2008 May; 153(1-2):382-8. PubMed ID: 17913357 [TBL] [Abstract][Full Text] [Related]
30. Study on physicochemical characteristics, solidification and utilisation of tannery sludge gasification ash. Zhang W; Wu Y; Huang S; Wu S; Gao J J Environ Manage; 2022 May; 310():114584. PubMed ID: 35192982 [TBL] [Abstract][Full Text] [Related]
31. The recycling of the coal fly ash in glass production. Erol MM; Küçükbayrak S; Ersoy-Meriçboyu A J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006; 41(9):1921-9. PubMed ID: 16849136 [TBL] [Abstract][Full Text] [Related]
32. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends. Lee SW J Air Waste Manag Assoc; 2001 Nov; 51(11):1568-78. PubMed ID: 11720104 [TBL] [Abstract][Full Text] [Related]
33. Distribution of PAHs in coal ashes from the thermal power plant and fluidized bed combustion system; estimation of environmental risk of ash disposal. Buha-Marković JZ; Marinković AD; Nemoda SĐ; Savić JZ Environ Pollut; 2020 Nov; 266(Pt 3):115282. PubMed ID: 32799176 [TBL] [Abstract][Full Text] [Related]
34. A review on fly ash from coal-fired power plants: chemical composition, regulations, and health evidence. Zierold KM; Odoh C Rev Environ Health; 2020 Nov; 35(4):401-418. PubMed ID: 32324165 [TBL] [Abstract][Full Text] [Related]
35. Influence of coal ash on potassium retention and ash melting characteristics during gasification of corn stalk coke. Zhang H; Li J; Yang X; Guo S; Zhan H; Zhang Y; Fang Y Bioresour Technol; 2018 Dec; 270():416-421. PubMed ID: 30245310 [TBL] [Abstract][Full Text] [Related]
36. Removal of pollutants from wastewater by coal bottom ash. Lin CY; Yang DH J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Sep; 37(8):1509-22. PubMed ID: 12369642 [TBL] [Abstract][Full Text] [Related]
38. Influence of Ashing Temperature on Predicting Slagging Characteristics of Xinjiang High-Sodium Low-Rank Coal and Strategy of Using Mineral Additives as Potential Slagging Preventatives. Qi X; Song W; Song G ACS Omega; 2021 Apr; 6(13):8850-8861. PubMed ID: 33842756 [TBL] [Abstract][Full Text] [Related]
39. Influences of In-Furnace Kaolin Addition on the Formation and Emission Characteristics of PM Xu Y; Liu X; Wang H; Zeng X; Zhang Y; Han J; Xu M; Pan S Environ Sci Technol; 2018 Aug; 52(15):8718-8724. PubMed ID: 29965744 [TBL] [Abstract][Full Text] [Related]
40. Co-combustion of distillery sludge and coal for application in boiler and subsequent utilization of the generated bottom ash. Dhote L; Pandey RA; Middey A; Mandal N; Kumar S Environ Sci Pollut Res Int; 2021 Jul; 28(27):36742-36752. PubMed ID: 33710486 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]