These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 37901831)
1. Metabolism-linked methylotaxis sensors responsible for plant colonization in Tani A; Masuda S; Fujitani Y; Iga T; Haruna Y; Kikuchi S; Shuaile W; Lv H; Katayama S; Yurimoto H; Sakai Y; Kato J Front Microbiol; 2023; 14():1258452. PubMed ID: 37901831 [TBL] [Abstract][Full Text] [Related]
2. Lanthanide-Dependent Methanol and Formaldehyde Oxidation in Yanpirat P; Nakatsuji Y; Hiraga S; Fujitani Y; Izumi T; Masuda S; Mitsui R; Nakagawa T; Tani A Microorganisms; 2020 May; 8(6):. PubMed ID: 32486139 [TBL] [Abstract][Full Text] [Related]
3. Lanthanide-Dependent Regulation of Methylotrophy in Masuda S; Suzuki Y; Fujitani Y; Mitsui R; Nakagawa T; Shintani M; Tani A mSphere; 2018; 3(1):. PubMed ID: 29404411 [No Abstract] [Full Text] [Related]
4. A Periplasmic Lanthanide Mediator, Lanmodulin, in Fujitani Y; Shibata T; Tani A Front Microbiol; 2022; 13():921636. PubMed ID: 35814700 [No Abstract] [Full Text] [Related]
5. Siderophore for Lanthanide and Iron Uptake for Methylotrophy and Plant Growth Promotion in Juma PO; Fujitani Y; Alessa O; Oyama T; Yurimoto H; Sakai Y; Tani A Front Microbiol; 2022; 13():921635. PubMed ID: 35875576 [No Abstract] [Full Text] [Related]
6. Contrasting in vitro and in vivo methanol oxidation activities of lanthanide-dependent alcohol dehydrogenases XoxF1 and ExaF from Methylobacterium extorquens AM1. Good NM; Moore RS; Suriano CJ; Martinez-Gomez NC Sci Rep; 2019 Mar; 9(1):4248. PubMed ID: 30862918 [TBL] [Abstract][Full Text] [Related]
7. Regulation of lanthanide-dependent methanol oxidation pathway in the legume symbiotic nitrogen-fixing bacterium Bradyrhizobium sp. strain Ce-3. Pastawan V; Suganuma S; Mizuno K; Wang L; Tani A; Mitsui R; Nakamura K; Shimada M; Hayakawa T; Fitriyanto NA; Nakagawa T J Biosci Bioeng; 2020 Dec; 130(6):582-587. PubMed ID: 32830039 [TBL] [Abstract][Full Text] [Related]
8. Bacteria with natural chemotaxis towards methanol revealed by chemotaxis fishing technique. Tola YH; Fujitani Y; Tani A Biosci Biotechnol Biochem; 2019 Nov; 83(11):2163-2171. PubMed ID: 31272289 [TBL] [Abstract][Full Text] [Related]
9. Pyrroloquinoline Quinone Ethanol Dehydrogenase in Methylobacterium extorquens AM1 Extends Lanthanide-Dependent Metabolism to Multicarbon Substrates. Good NM; Vu HN; Suriano CJ; Subuyuj GA; Skovran E; Martinez-Gomez NC J Bacteriol; 2016 Nov; 198(22):3109-3118. PubMed ID: 27573017 [TBL] [Abstract][Full Text] [Related]
10. Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Schmidt S; Christen P; Kiefer P; Vorholt JA Microbiology (Reading); 2010 Aug; 156(Pt 8):2575-2586. PubMed ID: 20447995 [TBL] [Abstract][Full Text] [Related]
11. A catalytic role of XoxF1 as La3+-dependent methanol dehydrogenase in Methylobacterium extorquens strain AM1. Nakagawa T; Mitsui R; Tani A; Sasa K; Tashiro S; Iwama T; Hayakawa T; Kawai K PLoS One; 2012; 7(11):e50480. PubMed ID: 23209751 [TBL] [Abstract][Full Text] [Related]
12. Lanthanide-dependent alcohol dehydrogenases require an essential aspartate residue for metal coordination and enzymatic function. Good NM; Fellner M; Demirer K; Hu J; Hausinger RP; Martinez-Gomez NC J Biol Chem; 2020 Jun; 295(24):8272-8284. PubMed ID: 32366463 [TBL] [Abstract][Full Text] [Related]
13. PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Keltjens JT; Pol A; Reimann J; Op den Camp HJ Appl Microbiol Biotechnol; 2014; 98(14):6163-83. PubMed ID: 24816778 [TBL] [Abstract][Full Text] [Related]
14. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Sy A; Timmers AC; Knief C; Vorholt JA Appl Environ Microbiol; 2005 Nov; 71(11):7245-52. PubMed ID: 16269765 [TBL] [Abstract][Full Text] [Related]
15. Lanthanide-Dependent Regulation of Methanol Oxidation Systems in Methylobacterium extorquens AM1 and Their Contribution to Methanol Growth. Vu HN; Subuyuj GA; Vijayakumar S; Good NM; Martinez-Gomez NC; Skovran E J Bacteriol; 2016 Apr; 198(8):1250-9. PubMed ID: 26833413 [TBL] [Abstract][Full Text] [Related]
16. Genomic characterization of methylotrophy of Oharaeibacter diazotrophicus strain SM30 Lv H; Tani A J Biosci Bioeng; 2018 Dec; 126(6):667-675. PubMed ID: 29914801 [TBL] [Abstract][Full Text] [Related]
17. XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”. Wu ML; Wessels JC; Pol A; Op den Camp HJ; Jetten MS; van Niftrik L Appl Environ Microbiol; 2015 Feb; 81(4):1442-51. PubMed ID: 25527536 [TBL] [Abstract][Full Text] [Related]
18. Complete Genome Sequence of Methylobacterium aquaticum Strain 22A, Isolated from Racomitrium japonicum Moss. Tani A; Ogura Y; Hayashi T; Kimbara K Genome Announc; 2015 Apr; 3(2):. PubMed ID: 25858842 [TBL] [Abstract][Full Text] [Related]
19. Identification of a TonB-Dependent Receptor Involved in Lanthanide Switch by the Characterization of Laboratory-Adapted Methylosinus trichosporium OB3b. Shiina W; Ito H; Kamachi T Appl Environ Microbiol; 2023 Jan; 89(1):e0141322. PubMed ID: 36645275 [TBL] [Abstract][Full Text] [Related]
20. XoxF Acts as the Predominant Methanol Dehydrogenase in the Type I Methanotroph Methylomicrobium buryatense. Chu F; Lidstrom ME J Bacteriol; 2016 Apr; 198(8):1317-25. PubMed ID: 26858104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]