These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 37901851)

  • 21. Interface engineering of graphene-silicon Schottky junction solar cells with an Al
    Alnuaimi A; Almansouri I; Saadat I; Nayfeh A
    RSC Adv; 2018 Mar; 8(19):10593-10597. PubMed ID: 35540487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two-dimensional quantum dots for highly efficient heterojunction solar cells.
    Abdelsalam H; Atta MM; Osman W; Zhang Q
    J Colloid Interface Sci; 2021 Dec; 603():48-57. PubMed ID: 34186410
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Band Alignment and Minigaps in Monolayer MoS2-Graphene van der Waals Heterostructures.
    Pierucci D; Henck H; Avila J; Balan A; Naylor CH; Patriarche G; Dappe YJ; Silly MG; Sirotti F; Johnson AT; Asensio MC; Ouerghi A
    Nano Lett; 2016 Jul; 16(7):4054-61. PubMed ID: 27281693
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Performance-Enhancing Approaches for PEDOT:PSS-Si Hybrid Solar Cells.
    Sun Z; He Y; Xiong B; Chen S; Li M; Zhou Y; Zheng Y; Sun K; Yang C
    Angew Chem Int Ed Engl; 2021 Mar; 60(10):5036-5055. PubMed ID: 31840360
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Van der Waals force: a dominant factor for reactivity of graphene.
    Lee JH; Avsar A; Jung J; Tan JY; Watanabe K; Taniguchi T; Natarajan S; Eda G; Adam S; Castro Neto AH; Özyilmaz B
    Nano Lett; 2015 Jan; 15(1):319-25. PubMed ID: 25493357
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sandwich-Doping for a Large Schottky Barrier and Long-Term Stability in Graphene/Silicon Schottky Junction Solar Cells.
    Im MJ; Hyeong SK; Park M; Lee SK; Kim TW; Jung GY; Bae S
    ACS Omega; 2021 Feb; 6(5):3973-3979. PubMed ID: 33585774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning the Schottky barrier height in graphene/monolayer-GeI
    de Andrade Deus DP; de Oliveira ISS
    J Phys Condens Matter; 2020 May; 32(35):. PubMed ID: 32320968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mixed-Dimensional van der Waals Heterostructures for Boosting Electricity Generation.
    Kong H; Yao H; Li Y; Wang Q; Qiu X; Yan J; Zhu J; Wang Y
    ACS Nano; 2023 Sep; 17(18):18456-18469. PubMed ID: 37698581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure.
    Phuc HV; Hieu NN; Hoi BD; Nguyen CV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17899-17908. PubMed ID: 29926024
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vertical and In-Plane Current Devices Using NbS
    Shin HG; Yoon HS; Kim JS; Kim M; Lim JY; Yu S; Park JH; Yi Y; Kim T; Jun SC; Im S
    Nano Lett; 2018 Mar; 18(3):1937-1945. PubMed ID: 29400979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.
    Padilha JE; Fazzio A; da Silva AJ
    Phys Rev Lett; 2015 Feb; 114(6):066803. PubMed ID: 25723237
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Utilizing van der Waals Slippery Interfaces to Enhance the Electrochemical Stability of Silicon Film Anodes in Lithium-Ion Batteries.
    Basu S; Suresh S; Ghatak K; Bartolucci SF; Gupta T; Hundekar P; Kumar R; Lu TM; Datta D; Shi Y; Koratkar N
    ACS Appl Mater Interfaces; 2018 Apr; 10(16):13442-13451. PubMed ID: 29620865
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dipole controlled Schottky barrier in the blue-phosphorene-phase of GeSe based van der Waals heterostructures.
    Peng L; Cui Y; Sun L; Du J; Wang S; Zhang S; Huang Y
    Nanoscale Horiz; 2019 Mar; 4(2):480-489. PubMed ID: 32254101
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functionalized graphene and other two-dimensional materials for photovoltaic devices: device design and processing.
    Liu Z; Lau SP; Yan F
    Chem Soc Rev; 2015 Aug; 44(15):5638-79. PubMed ID: 26024242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High-performance single CdS nanowire (nanobelt) Schottky junction solar cells with Au/graphene Schottky electrodes.
    Ye Y; Dai Y; Dai L; Shi Z; Liu N; Wang F; Fu L; Peng R; Wen X; Chen Z; Liu Z; Qin G
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3406-10. PubMed ID: 21058686
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Graphene-Enabled Materials for Photovoltaic Applications: A Comprehensive Review.
    Jain P; Rajput RS; Kumar S; Sharma A; Jain A; Bora BJ; Sharma P; Kumar R; Shahid M; Rajhi AA; Alsubih M; Shah MA; Bhowmik A
    ACS Omega; 2024 Mar; 9(11):12403-12425. PubMed ID: 38524428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gate-Tunable Graphene-WSe
    LaGasse SW; Dhakras P; Watanabe K; Taniguchi T; Lee JU
    Adv Mater; 2019 Jun; 31(24):e1901392. PubMed ID: 31012200
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Two-Dimensional Materials for Highly Efficient and Stable Perovskite Solar Cells.
    Shen X; Lin X; Peng Y; Zhang Y; Long F; Han Q; Wang Y; Han L
    Nanomicro Lett; 2024 May; 16(1):201. PubMed ID: 38782775
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The External Electric Field-Induced Tunability of the Schottky Barrier Height in Graphene/AlN Interface: A Study by First-Principles.
    Liu X; Zhang Z; Lv B; Ding Z; Luo Z
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hexagonal Boron Nitride for Surface Passivation of Two-Dimensional van der Waals Heterojunction Solar Cells.
    Cho AJ; Kwon JY
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39765-39771. PubMed ID: 31577117
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.