These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 37901955)

  • 1. Touchless Artificial Perception beyond Fingertip Probing.
    Wang HL; Wang Y
    ACS Nano; 2023 Nov; 17(21):20723-20733. PubMed ID: 37901955
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Dual-Responsive Artificial Skin for Tactile and Touchless Interfaces.
    Wang HL; Chen T; Zhang B; Wang G; Yang X; Wu K; Wang Y
    Small; 2023 May; 19(21):e2206830. PubMed ID: 36700923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Soft touchless sensors and touchless sensing for soft robots.
    Sirithunge C; Wang H; Iida F
    Front Robot AI; 2024; 11():1224216. PubMed ID: 38312746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetically Induced Grid Structure for Enhancing the Performance of a Dual-Mode Flexible Sensor with Tactile/Touchless Perception.
    Sun R; Zou Z; Yan R; Shou M; Zhang H; Zeng S; Feng H; Liao C
    ACS Appl Mater Interfaces; 2023 Dec; 15(51):59876-59886. PubMed ID: 38105477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stretchable Polymer Composite with a 3D Segregated Structure of PEDOT:PSS for Multifunctional Touchless Sensing.
    Wang Z; Wang T; Zhuang M; Xu H
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45301-45309. PubMed ID: 31710457
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the role of touchless technologies within diagnostic radiography: Results of an international survey.
    England A; Thompson JD; Littler E; Tugwell-Allsup J; Edwards E
    Radiography (Lond); 2022 May; 28(2):524-530. PubMed ID: 34961676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bimodal soft electronic skin for tactile and touchless interaction in real time.
    Ge J; Wang X; Drack M; Volkov O; Liang M; Cañón Bermúdez GS; Illing R; Wang C; Zhou S; Fassbender J; Kaltenbrunner M; Makarov D
    Nat Commun; 2019 Sep; 10(1):4405. PubMed ID: 31562319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Touchless interaction with software in interventional radiology and surgery: a systematic literature review.
    Mewes A; Hensen B; Wacker F; Hansen C
    Int J Comput Assist Radiol Surg; 2017 Feb; 12(2):291-305. PubMed ID: 27647327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Touchless Sensing Interface Based on the Magneto-Piezoresistive Effect of Magnetic Microstructures with Stacked Conductive Coating.
    Zhang W; Guo Q; Duan Y; Xu Q; Shang C; Li N; Peng Z
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61422-61433. PubMed ID: 34905921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. From luxury to necessity: Progress of touchless interaction technology.
    Iqbal MZ; Campbell AG
    Technol Soc; 2021 Nov; 67():101796. PubMed ID: 36313277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Touchless Control of Picture Archiving and Communication System in Operating Room Environment: A Comparative Study of Input Methods.
    Kim JT; Cha YH; Yoo JI; Park CH
    Clin Orthop Surg; 2021 Sep; 13(3):436-446. PubMed ID: 34484637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UltraButton: A Minimalist Touchless Multimodal Haptic Button.
    Morales R; Pittera D; Georgiou O; Kappus B; Frier W
    IEEE Trans Haptics; 2022; 15(4):729-740. PubMed ID: 36227813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimulus-Response and Response-Effect Compatibility With Touchless Gestures and Moving Action Effects.
    Janczyk M; Xiong A; Proctor RW
    Hum Factors; 2019 Dec; 61(8):1297-1314. PubMed ID: 30844314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous Solid and Yolk-Shell Titania Microspheres as Touchless Colorimetric Sensors with High Responsivity and Ultrashort Response Times.
    Jarulertwathana N; Mohd-Noor S; Hyun JK
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44786-44796. PubMed ID: 34510887
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Smart touchless human-machine interaction based on crystalline porous cages.
    Wang J; Lin W; Chen Z; Nikolaeva VO; Alimi LO; Khashab NM
    Nat Commun; 2024 Feb; 15(1):1575. PubMed ID: 38383478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potential security and privacy issues in zero UI touchless technology.
    Iqbal MZ; Campbell AG
    Int Cybersecur Law Rev; 2022; 3(1):131-137. PubMed ID: 37521506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrahigh Sensitive and Flexible Magnetoelectronics with Magnetic Nanocomposites: Toward an Additional Perception of Artificial Intelligence.
    Cai SY; Chang CH; Lin HI; Huang YF; Lin WJ; Lin SY; Liou YR; Shen TL; Huang YH; Tsao PW; Tzou CY; Liao YM; Chen YF
    ACS Appl Mater Interfaces; 2018 May; 10(20):17393-17400. PubMed ID: 29706071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the utility of 3D hand cursors to explore medical volume datasets with a touchless interface.
    Lopes DS; Parreira PDF; Paulo SF; Nunes V; Rego PA; Neves MC; Rodrigues PS; Jorge JA
    J Biomed Inform; 2017 Aug; 72():140-149. PubMed ID: 28720438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an Interactive Touchless Technology Based on Static-Electricity-Induced Luminescence.
    Abe K; Eguchi T; Oyama T; Fujio Y; Kikunaga K
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Haptics in User Input for People with Motor and Cognitive Impairments.
    Augstein M; Neumayr T; Burger T
    Stud Health Technol Inform; 2017; 242():183-194. PubMed ID: 28873797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.