BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 37902629)

  • 21. Regulation of glucose and ketone-body metabolism in brain of anaesthetized rats.
    Ruderman NB; Ross PS; Berger M; Goodman MN
    Biochem J; 1974 Jan; 138(1):1-10. PubMed ID: 4275704
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The regulation of ketogenesis.
    Foster DW; McGarry JD
    Ciba Found Symp; 1982; 87():120-31. PubMed ID: 6122545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of changes in the sensitivity of hepatic mitochondrial overt carnitine palmitoyltransferase in determining the onset of the ketosis of starvation in the rat.
    Drynan L; Quant PA; Zammit VA
    Biochem J; 1996 Sep; 318 ( Pt 3)(Pt 3):767-70. PubMed ID: 8836117
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Free acetate production by rat hepatocytes during peroxisomal fatty acid and dicarboxylic acid oxidation.
    Leighton F; Bergseth S; Rørtveit T; Christiansen EN; Bremer J
    J Biol Chem; 1989 Jun; 264(18):10347-50. PubMed ID: 2732225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acyl-CoA thioesterase-2 facilitates mitochondrial fatty acid oxidation in the liver.
    Moffat C; Bhatia L; Nguyen T; Lynch P; Wang M; Wang D; Ilkayeva OR; Han X; Hirschey MD; Claypool SM; Seifert EL
    J Lipid Res; 2014 Dec; 55(12):2458-70. PubMed ID: 25114170
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ACOT12-Dependent Alteration of Acetyl-CoA Drives Hepatocellular Carcinoma Metastasis by Epigenetic Induction of Epithelial-Mesenchymal Transition.
    Lu M; Zhu WW; Wang X; Tang JJ; Zhang KL; Yu GY; Shao WQ; Lin ZF; Wang SH; Lu L; Zhou J; Wang LX; Jia HL; Dong QZ; Chen JH; Lu JQ; Qin LX
    Cell Metab; 2019 Apr; 29(4):886-900.e5. PubMed ID: 30661930
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of insulin on ketogenesis and fatty acid synthesis in rat hepatocytes incubated with dichloroacetate.
    Agius L; Vaartjes WJ
    Biochim Biophys Acta; 1985 Mar; 844(3):393-9. PubMed ID: 3918587
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nonhomogeneous labeling of liver mitochondrial acetyl-CoA.
    Des Rosiers C; David F; Garneau M; Brunengraber H
    J Biol Chem; 1991 Jan; 266(3):1574-8. PubMed ID: 1988437
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carnitine palmitoyltransferase I control of acetogenesis, the major pathway of fatty acid {beta}-oxidation in liver of neonatal swine.
    Lin X; Shim K; Odle J
    Am J Physiol Regul Integr Comp Physiol; 2010 May; 298(5):R1435-43. PubMed ID: 20237302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential effects of acetate on palmitate and octanoate oxidation: segregation of acetyl CoA pools.
    Cederbaum AI; Rubin E
    Arch Biochem Biophys; 1975 Feb; 166(2):618-28. PubMed ID: 1119812
    [No Abstract]   [Full Text] [Related]  

  • 31. Metabolic engineering for efficient supply of acetyl-CoA from different carbon sources in Escherichia coli.
    Zhang S; Yang W; Chen H; Liu B; Lin B; Tao Y
    Microb Cell Fact; 2019 Aug; 18(1):130. PubMed ID: 31387584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing peroxisomal beta-oxidation and the labelling of acetyl-CoA proxies with [1-(13C)]octanoate and [3-(13C)]octanoate in the perfused rat liver.
    Kasumov T; Adams JE; Bian F; David F; Thomas KR; Jobbins KA; Minkler PE; Hoppel CL; Brunengraber H
    Biochem J; 2005 Jul; 389(Pt 2):397-401. PubMed ID: 15773815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A biochemical basis for depressed ketogenesis in sepsis.
    Vary TC; Siegel JH; Nakatani T; Sato T; Aoyama H
    J Trauma; 1986 May; 26(5):419-25. PubMed ID: 3701891
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of free acetate by isolated perfused livers from normal, starved and diabetic rats.
    Seufert CD; Graf M; Janson G; Kuhn A; Söling HD
    Biochem Biophys Res Commun; 1974 Apr; 57(3):901-9. PubMed ID: 4827840
    [No Abstract]   [Full Text] [Related]  

  • 35. Peroxisomal and mitochondrial oxidation of fatty acids in the heart, assessed from the 13C labeling of malonyl-CoA and the acetyl moiety of citrate.
    Bian F; Kasumov T; Thomas KR; Jobbins KA; David F; Minkler PE; Hoppel CL; Brunengraber H
    J Biol Chem; 2005 Mar; 280(10):9265-71. PubMed ID: 15611129
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production of endogenous acetate by the liver in lactating ewes.
    Costa ND; McIntosh GH; Snoswell AM
    Aust J Biol Sci; 1976 Mar; 29(1-2):33-42. PubMed ID: 962721
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mammalian autophagy is essential for hepatic and renal ketogenesis during starvation.
    Takagi A; Kume S; Kondo M; Nakazawa J; Chin-Kanasaki M; Araki H; Araki S; Koya D; Haneda M; Chano T; Matsusaka T; Nagao K; Adachi Y; Chan L; Maegawa H; Uzu T
    Sci Rep; 2016 Jan; 6():18944. PubMed ID: 26732653
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of hepatic fatty acid metabolism. The activities of mitochondrial and microsomal acyl-CoA:sn-glycerol 3-phosphate O-acyltransferase and the concentrations of malonyl-CoA, non-esterified and esterified carnitine, glycerol 3-phosphate, ketone bodies and long-chain acyl-CoA esters in livers of fed or starved pregnant, lactating and weaned rats.
    Zammit VA
    Biochem J; 1981 Jul; 198(1):75-83. PubMed ID: 7326003
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antiketogenic action of fructose, glyceraldehyde, and sorbitol in the rat in vivo.
    Rawat AK; Menahan LA
    Diabetes; 1975 Oct; 24(10):926-32. PubMed ID: 1175862
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.